The utilization of chelation reaction between metals and tannins is a common tanning method in leather chemistry.Herein,a novel combination tanning mechanism inspired environmentally benign catalyst(CMBT-Fe^(0))was sy...The utilization of chelation reaction between metals and tannins is a common tanning method in leather chemistry.Herein,a novel combination tanning mechanism inspired environmentally benign catalyst(CMBT-Fe^(0))was synthesized by immobilizing Fe nanoparticles onto bayberry tannin(BT)grafted chitosan microfibers(CM).The obtained catalyst featured a well-defined microfibrous structure,on which Fe^(0)nanoparticles were highly dispersed to exhibit exceptional catalytic activity for the degradation of tetracycline(TC).The catalytic activity of CMBT-Fe^(0)was 1.72 times higher than that of the commercial Fe^(0)nanoparticles without immobilization,with 95.03%of TC degraded within 90.0 min.The CMBT-Fe^(0)catalysts were recycled 6 times,with the removal rate of TC maintained at 82.56%.Furthermore,a possible mechanism responsible for the catalytic removal of TC was provided by analyzing the catalytic degradation products via liquid chromatography-mass spectrometry.Therefore,our investigation successfully developed efficient catalysts to address the concerned environmental issue of antibiotic pollution.展开更多
基金supported by National Key R&D Program of China(2021YFC2103800)the Technical Development Project of Sichuan University(No.22H0798)Fundamental Research Funds for the Central Universities.
文摘The utilization of chelation reaction between metals and tannins is a common tanning method in leather chemistry.Herein,a novel combination tanning mechanism inspired environmentally benign catalyst(CMBT-Fe^(0))was synthesized by immobilizing Fe nanoparticles onto bayberry tannin(BT)grafted chitosan microfibers(CM).The obtained catalyst featured a well-defined microfibrous structure,on which Fe^(0)nanoparticles were highly dispersed to exhibit exceptional catalytic activity for the degradation of tetracycline(TC).The catalytic activity of CMBT-Fe^(0)was 1.72 times higher than that of the commercial Fe^(0)nanoparticles without immobilization,with 95.03%of TC degraded within 90.0 min.The CMBT-Fe^(0)catalysts were recycled 6 times,with the removal rate of TC maintained at 82.56%.Furthermore,a possible mechanism responsible for the catalytic removal of TC was provided by analyzing the catalytic degradation products via liquid chromatography-mass spectrometry.Therefore,our investigation successfully developed efficient catalysts to address the concerned environmental issue of antibiotic pollution.