This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show...This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.展开更多
Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route t...Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route to in-situ study of the surface information like the composition and electronic states. Currently, as a non-destructive detection protocol, KPFM demonstrates the unique potential to probe the basic nature of perovskite materials that is extremely sensitive to water, oxygen and electron beam irradiation. This paper systematically introduces the fundamentals and working mode of KPFM, and elaborates the promising applications in perovskite solar cells for energy band structures and carrier transport dynamics, trap states, crystal phases, as well as ion migration explorations. The comprehensive understanding of such potential detection engineering may provide novel and effective approaches for unraveling the unique properties of perovskite solar cells.展开更多
基金the National Natural Science Foundation of China(No.61927815)the Natural Science Foundation of Tianjin City(Nos.22JCYBJC01100 and 20JCZDJC00430)+4 种基金the Shijiazhuang Overseas Talents Introduction Project(No.20230004)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202201)Funds for Basic Scientific Research of Hebei University of Technology(No.JBKYTD2201)D.J.acknowledges the support from the Postgraduate Innovation Ability Training Program of Hebei Province(No.CXZZBS2021030)R.P.M.acknowledges the support from the Asian Office of Aerospace Research and Development(AOARD).
文摘This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.
基金supported by the National Key Research and Development Program of China (2016YFA0202701)the Overseas Expertise Introduction Projects for Discipline Innovation (111 project, B14003)+4 种基金the National Natural Science Foundation of China (51527802, 51232001, 51702014 and 51372020)the National Major Research Program of China (2013CB932602)Beijing Municipal Science & Technology Commission (Z161100002116027)the State Key Laboratory for Advanced Metals and Materialsthe Fundamental Research Funds for the Central Universities (FRF-TP-18-042A1)
文摘Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route to in-situ study of the surface information like the composition and electronic states. Currently, as a non-destructive detection protocol, KPFM demonstrates the unique potential to probe the basic nature of perovskite materials that is extremely sensitive to water, oxygen and electron beam irradiation. This paper systematically introduces the fundamentals and working mode of KPFM, and elaborates the promising applications in perovskite solar cells for energy band structures and carrier transport dynamics, trap states, crystal phases, as well as ion migration explorations. The comprehensive understanding of such potential detection engineering may provide novel and effective approaches for unraveling the unique properties of perovskite solar cells.