To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust remova...To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust removal system is designed,and the dust removal effect is optimized through the setting of the following dampers and diversion plates.The result of numerical simulation indicates that the particle collection rate can reach 99.44%,and the field test also proves the effectiveness of the dust removal system,which is of guiding significance for the transformation of other similar dust removal systems.展开更多
Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In thi...Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.展开更多
The alleviative effects of exogenous salicylic acid (SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA. Drought stress was simulated to ...The alleviative effects of exogenous salicylic acid (SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA. Drought stress was simulated to a moderate level by 15% polyethylene glycol (PEG) 6000 treatment. Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass, seedling height, root length, relative water content, photosynthetic pigment content, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency. In PEG-stressed plants, the levels ofproline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage rose significantly, whereas antioxidative activity, including superoxide, peroxidase, and catalase activities, declined in leaves. However, the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G. jasminoides seedlings, which depended on SA levels. PEG-treated plants exposed to SA at 0.5-1.0 mmol/L significantly eased PEG-induced growth inhibition. Application of SA, especially at concentrations of 0.5-1.0 mmol/L, considerably improved photosynthetic pigments, photosynthesis, antioxidative activity, relative water content, and proline accumulation, and decreased MDA content, H202 content, and electrolyte leakage. By contrast, the positive effects were not evident, or even more severe, in PEG+SA4 treatment. Based on these physiological and biochemical data, a suitable concentration of SA, potential growth regulators, could be applied to enhance the drought tolerance of G. jasminoides.展开更多
In this study,a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O3)reactor has been developed.Using 1-phenylethanol as a model reactant,the performance of RPB...In this study,a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O3)reactor has been developed.Using 1-phenylethanol as a model reactant,the performance of RPB-O3 process in different solvents has been compared with the commonly used stirred tank reactor(STR-O3).Ethyl acetate was the optimum solvent for the conversion of 1-phenylenthanol to acetophenone in RPB-O3 process,with 78%yield after 30 min.In a parallel STR-O3 experiment,the yield of acetophenone was50%.Other experimental variables,i.e.O3 concentration,reaction time,high-gravity factor and liquid flow rate were also optimized.The highest yield of acetophenone was obtained using O3 concentration of 80 mg·L-1,reaction time of 30 min,high gravity factor of 40 and liquid flow rate of 120 L·h-1.Under the optimized reaction conditions,a series of structurally diverse primary and secondary alcohols was oxidized with(19%–92%)yield.The ozonization mechanism was studied by Electron Paramagnetic Resonance(EPR)spectroscopy,monitoring the radical species formed upon self-decomposition of O3.The characteristic quadruple peak with the 1:2:2:1 intensity ratio that corresponds to hydroxyl radicals(·OH)was observed in the electron paramagnetic resonance(EPR)spectrum,indicating an indirect oxidation mechanism of alcohols via·OH radical.展开更多
Accurate estimate of tree biomass is essential for forest management.In recent years,several climate-sensitive allometric biomass models with diameter at breast height(D)as a predictor have been proposed for various t...Accurate estimate of tree biomass is essential for forest management.In recent years,several climate-sensitive allometric biomass models with diameter at breast height(D)as a predictor have been proposed for various tree species and climate zones to estimate tree aboveground biomass(AGB).But the allometric models only account for the potential effects of climate on tree biomass and do not simultaneously explain the influence of climate on D growth.In this study,based on the AGB data from 256 destructively sampled trees of three larch species randomly distributed across the five secondary climate zones in northeastern and northern China,we first developed a climate-sensitive AGB base model and a climate-sensitive D growth base model using a nonlinear least square regression separately.A compatible simultaneous model system was then developed with the climate-sensitive AGB and D growth models using a nonlinear seemingly unrelated regression.The potential effects of several temperature and precipitation variables on AGB and D growth were evaluated.The fitting results of climatic sensitive base models were compared against those of their compatible simultaneous model system.It was found that a decreased isothermality([mean of monthly(maximum temperatureminimum temperature)]/(Maximum temperature of the warmest month-Minimum temperature of the coldest month))and total growing season precipitation,and increased annual precipitation significantly increased the values of AGB;an increase of temperature seasonality(a standard deviation of the mean monthly temperature)and precipitation seasonality(a standard deviation of the mean monthly precipitation)could lead to the increase of D.The differences of the model fitting results between the compatible simultaneous system with the consideration of climate effects on both AGB and D growth and its corresponding climate-sensitive AGB and D growth base models were very small and insignificant(p>0.05).Compared to the base models,the inhere nt correlation of AGB with D was taken into account effectively by the proposed compatible model system developed with the climate-sensitive AGB and D grow th models.In addition,the compatible properties of the estimated AGB and D were also addressed substantially in the proposed model system.展开更多
基金Changchun Science and Technology Development Plan Project,Automobile Rolling Line Longitudinal Beam Cutting Process Under the Extraction and Dust Removal Process Test and Research,Project Approval No.21ST04。
文摘To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust removal system is designed,and the dust removal effect is optimized through the setting of the following dampers and diversion plates.The result of numerical simulation indicates that the particle collection rate can reach 99.44%,and the field test also proves the effectiveness of the dust removal system,which is of guiding significance for the transformation of other similar dust removal systems.
基金supported by the forestry public welfare scientific research project(Grant No.201504303)。
文摘Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.
基金funded by the National Natural Science Foundation of China (31300555)Special Foundation of Anti-aging Chinese Herbal Research Institution of Anhui Province (2013KSLZX02)Natural Science Foundation of Anhui Province (KJ2013A207 and 2015KJ004)
文摘The alleviative effects of exogenous salicylic acid (SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA. Drought stress was simulated to a moderate level by 15% polyethylene glycol (PEG) 6000 treatment. Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass, seedling height, root length, relative water content, photosynthetic pigment content, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency. In PEG-stressed plants, the levels ofproline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage rose significantly, whereas antioxidative activity, including superoxide, peroxidase, and catalase activities, declined in leaves. However, the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G. jasminoides seedlings, which depended on SA levels. PEG-treated plants exposed to SA at 0.5-1.0 mmol/L significantly eased PEG-induced growth inhibition. Application of SA, especially at concentrations of 0.5-1.0 mmol/L, considerably improved photosynthetic pigments, photosynthesis, antioxidative activity, relative water content, and proline accumulation, and decreased MDA content, H202 content, and electrolyte leakage. By contrast, the positive effects were not evident, or even more severe, in PEG+SA4 treatment. Based on these physiological and biochemical data, a suitable concentration of SA, potential growth regulators, could be applied to enhance the drought tolerance of G. jasminoides.
基金supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)Key Research&Development Plan of Shanxi Province(201903D321059)+1 种基金Shanxi Scholarship Council of China(2019032)Shanxi Graduate Education Innovation Project(2019BY106)。
文摘In this study,a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O3)reactor has been developed.Using 1-phenylethanol as a model reactant,the performance of RPB-O3 process in different solvents has been compared with the commonly used stirred tank reactor(STR-O3).Ethyl acetate was the optimum solvent for the conversion of 1-phenylenthanol to acetophenone in RPB-O3 process,with 78%yield after 30 min.In a parallel STR-O3 experiment,the yield of acetophenone was50%.Other experimental variables,i.e.O3 concentration,reaction time,high-gravity factor and liquid flow rate were also optimized.The highest yield of acetophenone was obtained using O3 concentration of 80 mg·L-1,reaction time of 30 min,high gravity factor of 40 and liquid flow rate of 120 L·h-1.Under the optimized reaction conditions,a series of structurally diverse primary and secondary alcohols was oxidized with(19%–92%)yield.The ozonization mechanism was studied by Electron Paramagnetic Resonance(EPR)spectroscopy,monitoring the radical species formed upon self-decomposition of O3.The characteristic quadruple peak with the 1:2:2:1 intensity ratio that corresponds to hydroxyl radicals(·OH)was observed in the electron paramagnetic resonance(EPR)spectrum,indicating an indirect oxidation mechanism of alcohols via·OH radical.
基金supported by the Thirteenth Five-year Plan Pioneering project of High Technology Plan of the National Department of Technology(No.2017YFC0503906)the Natural Science Foundation of Beijing(No.5184036)the Project for Science and Technology Open Cooperation of Henan Province(172106000071)the Chinese National Natural Science Foundations(Grant Nos.31470641,31300534 and 31570628).We also appreciate the valuable comments and constructive suggestions from two anonymous referees and the Associate Editor who helped improve the manuscript.Z.Gao,Q.Wang and Z.Hu authors contributed equally to this work.
文摘Accurate estimate of tree biomass is essential for forest management.In recent years,several climate-sensitive allometric biomass models with diameter at breast height(D)as a predictor have been proposed for various tree species and climate zones to estimate tree aboveground biomass(AGB).But the allometric models only account for the potential effects of climate on tree biomass and do not simultaneously explain the influence of climate on D growth.In this study,based on the AGB data from 256 destructively sampled trees of three larch species randomly distributed across the five secondary climate zones in northeastern and northern China,we first developed a climate-sensitive AGB base model and a climate-sensitive D growth base model using a nonlinear least square regression separately.A compatible simultaneous model system was then developed with the climate-sensitive AGB and D growth models using a nonlinear seemingly unrelated regression.The potential effects of several temperature and precipitation variables on AGB and D growth were evaluated.The fitting results of climatic sensitive base models were compared against those of their compatible simultaneous model system.It was found that a decreased isothermality([mean of monthly(maximum temperatureminimum temperature)]/(Maximum temperature of the warmest month-Minimum temperature of the coldest month))and total growing season precipitation,and increased annual precipitation significantly increased the values of AGB;an increase of temperature seasonality(a standard deviation of the mean monthly temperature)and precipitation seasonality(a standard deviation of the mean monthly precipitation)could lead to the increase of D.The differences of the model fitting results between the compatible simultaneous system with the consideration of climate effects on both AGB and D growth and its corresponding climate-sensitive AGB and D growth base models were very small and insignificant(p>0.05).Compared to the base models,the inhere nt correlation of AGB with D was taken into account effectively by the proposed compatible model system developed with the climate-sensitive AGB and D grow th models.In addition,the compatible properties of the estimated AGB and D were also addressed substantially in the proposed model system.