Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard te...Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard template and CuFe2O4samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,X-ray fluorescence,transmission electron microscopy,scanning electron microscopy,nitrogen physisorption,and hydrogen-temperature programmed reduction.The KIT-6 hard template had perfect crystallization and ordered mesoporous structure with a probable pore distribution of about 9.1 nm,large enough to be filled by the spinel precursor.The mesoporous CuFe2O4spinel oxide synthesized inside the KIT-6 mesopores had a relatively small pore size(4.3 nm),orderly arrangement,and high specific area(194 m2/g).The catalytic activity of the mesoporous CuFe2O4was tested for the selective oxidation of ammonia to nitrogen.The conversion of ammonia reached nearly 100%at 300°C with a nitrogen selectivity as high as 96%.The nitrogen selectivity remained high with increasing temperature and even maintained a value of80%at 600°C.展开更多
基金supported by the National High Technology Research and Development Program of China (2013AA065900)the National Natural Science Foundation of China (21177008,21121064)
文摘Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard template and CuFe2O4samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,X-ray fluorescence,transmission electron microscopy,scanning electron microscopy,nitrogen physisorption,and hydrogen-temperature programmed reduction.The KIT-6 hard template had perfect crystallization and ordered mesoporous structure with a probable pore distribution of about 9.1 nm,large enough to be filled by the spinel precursor.The mesoporous CuFe2O4spinel oxide synthesized inside the KIT-6 mesopores had a relatively small pore size(4.3 nm),orderly arrangement,and high specific area(194 m2/g).The catalytic activity of the mesoporous CuFe2O4was tested for the selective oxidation of ammonia to nitrogen.The conversion of ammonia reached nearly 100%at 300°C with a nitrogen selectivity as high as 96%.The nitrogen selectivity remained high with increasing temperature and even maintained a value of80%at 600°C.