Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification ...Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification effect of a paddy ditch wetland in Gaochun,Nanjing,Jiangsu Province,we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice.Then,the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison.At last,the effect of the ditch wetland on nutrient purification and treatment mechanism,along with changing flow and concentration in paddy drains,was clarified.The results of this study showed that the concentrations of various nitrogen and phosphorus in the ditch basically reached the peak on the second and third days after the rainfall(5.98 mg/L for TN and 0.21 mg/L for TP),which provided a response time for effective control of nitrogen and phosphorus loss.The drainage can be purified by the ecological ditch,about 89.61%,89.03%,89.61%,98.14%,and 79.05%of TN,NH4+-N,NO3−-N,NO2−-N,and TP decline.It is more effective than natural ditches for water purification with 80.59%,40%,12.07%,91.06%and 18.42%removal rates,respectively.The results of the study can provide a theoretical basis for controlling agricultural non-point source pollution and improving the water environment of rivers and lakes scientifically.展开更多
Cultivated strawberry(Fragaria×ananassa),a perennial herb belonging to the family Rosaceae,is a complex octoploid with high heterozygosity at most loci.However,there is no research on the haplotype of the octoplo...Cultivated strawberry(Fragaria×ananassa),a perennial herb belonging to the family Rosaceae,is a complex octoploid with high heterozygosity at most loci.However,there is no research on the haplotype of the octoploid strawberry genome.Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar,“Yanli”,using single molecule real-time sequencing and high-throughput chromosome conformation capture technology.The“Yanli”genome was 823 Mb in size,with a long terminal repeat assembly index of 14.99.The genome was phased into two haplotypes,Hap1(825 Mb with contig N50 of 26.70 Mb)and Hap2(808 Mb with contig N50 of 27.51 Mb).Using the combination of Hap1 and Hap2,we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry.We identified a∼10 Mb inversion and translocation on chromosome 2-1.104957 and 102356 protein-coding genes were annotated in Hap1 and Hap2,respectively.Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F.×ananassa genome.In summary,we obtained a high-quality haplotype-resolved genome assembly of F.×ananassa,which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.展开更多
TiO_(2)-supported V_(2)O_(5)catalysts are commonly used in NO_(x)reduction with ammonia due to their robust catalytic performance.Over these catalysts,it is generally considered that the active species are mainly deri...TiO_(2)-supported V_(2)O_(5)catalysts are commonly used in NO_(x)reduction with ammonia due to their robust catalytic performance.Over these catalysts,it is generally considered that the active species are mainly derived from the vanadia species rather than the intrinsic structure of V-O-Ti entities,namely the interface sites.To reveal the role of V-O-Ti entities in NH_(3)-SCR,herein,we prepared TiO_(2)/V_(2)O_(5)catalysts and demonstrated that V-O-Ti entities were more active for NO_(x)reduction under wet conditions than the V sites(V=O)working alone.On the V-O-Ti entities,kinetic measurements and first principles calculations revealed that NH_(3)activation exhibited a much lower energy barrier than that on V=O sites.Under wet conditions,the V-O-Ti interface significantly inhibited the transformation of V=O to V-OH sites thus benefiting NH_(3)activation.Under wet conditions,meanwhile,the migration of NH_(4)^(+)from Ti site neighboring the V-O-Ti interface to Ti site of the V-O-Ti interface was exothermic;thus,V-O-Ti entities together with neighboring Ti sites could serve as channels linking NH_(3)pool and active centers for activation of NH_(4)^(+).This finding reveals that the V-O-Ti interface sites on V-based catalysts play a crucial role in NO_(x)removal under realistic conditions,providing a new perspective on NH_(3)-SCR mechanism.展开更多
In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The gl...In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The global iterative solving process is specially designed to mimic the physical and chemical process in reactive shock waves to ensure good stability and fast convergence in the proposed method.Within each global step,the single-variable equations of normal and oblique shock relations are derived and solved with the Newton iteration method to reduce the complexity of the problems,and the minimization of free energy method of NASA(National Aeronautics and Space Administration)is adopted to solve equilibrium compositions.It is demonstrated that the convergent process is stable and very close to the real chemical-kinetic process,and high accuracy is achieved in the solutions of normal and oblique reactive shock waves.Moreover,the proposed theoretical method has also been applied to many problems associated with reactive shocks,including the stability of oblique detonation wave,bow detonation over a sphere,and shock reflection in dissociated air.The great importance of using chemical equilibrium to theoretically predict the theoretical range of the wedge angle for a standing oblique detonation wave(the standing window of the oblique detonation wave),the stand-off distance of bow detonation wave and the transition criterion of shock reflection in dissociated air with high accuracy have been addressed.展开更多
Aramid fibers(AFs)are widely applied in many cutting-edge fields,due to their excellent comprehensive performance.Ongoing research efforts are therefore underway to expand the applicability by designing more environme...Aramid fibers(AFs)are widely applied in many cutting-edge fields,due to their excellent comprehensive performance.Ongoing research efforts are therefore underway to expand the applicability by designing more environmentally friendly and low-cost synthesis methods,incorporating new chemical components in the skeletons or internal structures of polyamide to enhance their processability and functionality.Despite being at the forefront of scientific research,there are fewer reviews that comprehensively summarize the latest progress of AFs.This review focuses on the fundamental research of AFs since their inception and summarizes the advanced progress and applications of AFs.Firstly,the synthesis mechanism and methods of AFs and their structure-property relationship are comprehensively discussed.Subsequently,we review the recent progress in surface functionalization of AFs by using advanced micro-nanoscale modification strategies to enhance the interface properties and ultraviolet(UV)-resistance properties,and summarize the advantages and disadvantages of various modified methods.Then,applications of AF and aramid nanofiber(ANF)in various fields are discussed.Finally,the possible challenges and outlooks toward the future development of AFs are highlighted,which is expected to provide new insights for the next-generation advanced functional AF materials and facilitate the industrialization development level for high-performance AFs and their composites.展开更多
文摘Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification effect of a paddy ditch wetland in Gaochun,Nanjing,Jiangsu Province,we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice.Then,the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison.At last,the effect of the ditch wetland on nutrient purification and treatment mechanism,along with changing flow and concentration in paddy drains,was clarified.The results of this study showed that the concentrations of various nitrogen and phosphorus in the ditch basically reached the peak on the second and third days after the rainfall(5.98 mg/L for TN and 0.21 mg/L for TP),which provided a response time for effective control of nitrogen and phosphorus loss.The drainage can be purified by the ecological ditch,about 89.61%,89.03%,89.61%,98.14%,and 79.05%of TN,NH4+-N,NO3−-N,NO2−-N,and TP decline.It is more effective than natural ditches for water purification with 80.59%,40%,12.07%,91.06%and 18.42%removal rates,respectively.The results of the study can provide a theoretical basis for controlling agricultural non-point source pollution and improving the water environment of rivers and lakes scientifically.
基金This work was financially supported by National Natural Science Foundation of China(No.32130092,No.31872072)LiaoNing Revitalization Talents Pro-gram(No.XLYC1902069).
文摘Cultivated strawberry(Fragaria×ananassa),a perennial herb belonging to the family Rosaceae,is a complex octoploid with high heterozygosity at most loci.However,there is no research on the haplotype of the octoploid strawberry genome.Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar,“Yanli”,using single molecule real-time sequencing and high-throughput chromosome conformation capture technology.The“Yanli”genome was 823 Mb in size,with a long terminal repeat assembly index of 14.99.The genome was phased into two haplotypes,Hap1(825 Mb with contig N50 of 26.70 Mb)and Hap2(808 Mb with contig N50 of 27.51 Mb).Using the combination of Hap1 and Hap2,we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry.We identified a∼10 Mb inversion and translocation on chromosome 2-1.104957 and 102356 protein-coding genes were annotated in Hap1 and Hap2,respectively.Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F.×ananassa genome.In summary,we obtained a high-quality haplotype-resolved genome assembly of F.×ananassa,which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.
基金supported by the National Natural Science Foundation of China (Nos.U20B6004,22072179,and 22276202)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA23010200)+1 种基金the Special project of eco-environmental technology for peak carbon dioxide emissions and carbon neutrality (No.RCEES-TDZ2021-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2019045)。
文摘TiO_(2)-supported V_(2)O_(5)catalysts are commonly used in NO_(x)reduction with ammonia due to their robust catalytic performance.Over these catalysts,it is generally considered that the active species are mainly derived from the vanadia species rather than the intrinsic structure of V-O-Ti entities,namely the interface sites.To reveal the role of V-O-Ti entities in NH_(3)-SCR,herein,we prepared TiO_(2)/V_(2)O_(5)catalysts and demonstrated that V-O-Ti entities were more active for NO_(x)reduction under wet conditions than the V sites(V=O)working alone.On the V-O-Ti entities,kinetic measurements and first principles calculations revealed that NH_(3)activation exhibited a much lower energy barrier than that on V=O sites.Under wet conditions,the V-O-Ti interface significantly inhibited the transformation of V=O to V-OH sites thus benefiting NH_(3)activation.Under wet conditions,meanwhile,the migration of NH_(4)^(+)from Ti site neighboring the V-O-Ti interface to Ti site of the V-O-Ti interface was exothermic;thus,V-O-Ti entities together with neighboring Ti sites could serve as channels linking NH_(3)pool and active centers for activation of NH_(4)^(+).This finding reveals that the V-O-Ti interface sites on V-based catalysts play a crucial role in NO_(x)removal under realistic conditions,providing a new perspective on NH_(3)-SCR mechanism.
基金co-supported by the National Natural Science Foundation of China (Nos. 11672312, 11772284 and 11532014)the Research Grants Council, Hong Kong, China (No. 152151/16E)the Department of Mechanical Engineering, The Hong Kong Polytechnic University, China (No. G-YBYJ)
文摘In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The global iterative solving process is specially designed to mimic the physical and chemical process in reactive shock waves to ensure good stability and fast convergence in the proposed method.Within each global step,the single-variable equations of normal and oblique shock relations are derived and solved with the Newton iteration method to reduce the complexity of the problems,and the minimization of free energy method of NASA(National Aeronautics and Space Administration)is adopted to solve equilibrium compositions.It is demonstrated that the convergent process is stable and very close to the real chemical-kinetic process,and high accuracy is achieved in the solutions of normal and oblique reactive shock waves.Moreover,the proposed theoretical method has also been applied to many problems associated with reactive shocks,including the stability of oblique detonation wave,bow detonation over a sphere,and shock reflection in dissociated air.The great importance of using chemical equilibrium to theoretically predict the theoretical range of the wedge angle for a standing oblique detonation wave(the standing window of the oblique detonation wave),the stand-off distance of bow detonation wave and the transition criterion of shock reflection in dissociated air with high accuracy have been addressed.
基金supported by the National Natural Science Foundation of China(No.52373085)Natural Science Foundation of Hubei Province(No.2023AFB828)+3 种基金Innovative Team Program of Natural Science Foundation of Hubei Province(No.2023AFA027)Hubei Key Laboratory of Digital Textile Equipment,Wuhan Textile University(No.DTL 2022006)National Engineering Laboratory for Modern Silk,Soochow University(No.SDGC2148)National Local Joint Laboratory for Advanced Textile Processing and Clean Production(No.17).
文摘Aramid fibers(AFs)are widely applied in many cutting-edge fields,due to their excellent comprehensive performance.Ongoing research efforts are therefore underway to expand the applicability by designing more environmentally friendly and low-cost synthesis methods,incorporating new chemical components in the skeletons or internal structures of polyamide to enhance their processability and functionality.Despite being at the forefront of scientific research,there are fewer reviews that comprehensively summarize the latest progress of AFs.This review focuses on the fundamental research of AFs since their inception and summarizes the advanced progress and applications of AFs.Firstly,the synthesis mechanism and methods of AFs and their structure-property relationship are comprehensively discussed.Subsequently,we review the recent progress in surface functionalization of AFs by using advanced micro-nanoscale modification strategies to enhance the interface properties and ultraviolet(UV)-resistance properties,and summarize the advantages and disadvantages of various modified methods.Then,applications of AF and aramid nanofiber(ANF)in various fields are discussed.Finally,the possible challenges and outlooks toward the future development of AFs are highlighted,which is expected to provide new insights for the next-generation advanced functional AF materials and facilitate the industrialization development level for high-performance AFs and their composites.