Three-dimensional(3D)additive manufacturing techniques have been utilized to make 3D electrical components,such as resistors,capacitors,and inductors,as well as circuits and passive wireless sensors.Using the fused de...Three-dimensional(3D)additive manufacturing techniques have been utilized to make 3D electrical components,such as resistors,capacitors,and inductors,as well as circuits and passive wireless sensors.Using the fused deposition modeling technology and a multiple-nozzle system with a printing resolution of 30μm,3D structures with both supporting and sacrificial structures are constructed.After removing the sacrificial materials,suspensions with silver particles are injected subsequently solidified to form metallic elements/interconnects.The prototype results show good characteristics of fabricated 3D microelectronics components,including an inductor–capacitor-resonant tank circuitry with a resonance frequency at 0.53 GHz.A 3D“smart cap”with an embedded inductor–capacitor tank as the wireless passive sensor was demonstrated to monitor the quality of liquid food(e.g.,milk and juice)wirelessly.The result shows a 4.3%resonance frequency shift from milk stored in the room temperature environment for 36 h.This work establishes an innovative approach to construct arbitrary 3D systems with embedded electrical structures as integrated circuitry for various applications,including the demonstrated passive wireless sensors.展开更多
基金Mr.Sung-Yueh Wu is supported by the“Ministry of Science and Technology of Taiwan”(Grant No.103-2917-I-009-192).
文摘Three-dimensional(3D)additive manufacturing techniques have been utilized to make 3D electrical components,such as resistors,capacitors,and inductors,as well as circuits and passive wireless sensors.Using the fused deposition modeling technology and a multiple-nozzle system with a printing resolution of 30μm,3D structures with both supporting and sacrificial structures are constructed.After removing the sacrificial materials,suspensions with silver particles are injected subsequently solidified to form metallic elements/interconnects.The prototype results show good characteristics of fabricated 3D microelectronics components,including an inductor–capacitor-resonant tank circuitry with a resonance frequency at 0.53 GHz.A 3D“smart cap”with an embedded inductor–capacitor tank as the wireless passive sensor was demonstrated to monitor the quality of liquid food(e.g.,milk and juice)wirelessly.The result shows a 4.3%resonance frequency shift from milk stored in the room temperature environment for 36 h.This work establishes an innovative approach to construct arbitrary 3D systems with embedded electrical structures as integrated circuitry for various applications,including the demonstrated passive wireless sensors.