Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well a...Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis.These algorithms are also suitable for fraudulent phone text recognition.Compared to these tasks,the semantics of fraudulent words are more complex and more difficult to distinguish.Recurrent Neural Networks(RNN),the variants ofRNN,ConvolutionalNeuralNetworks(CNN),and hybrid neural networks to extract text features are used by most text classification research.However,a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively.Therefore,a new model is proposed in this paper.In the fraudulent phone text,the knowledge that can be learned by the model includes the sequence structure of sentences,the correlation between words,the correlation of contextual semantics,the feature of keywords in sentences,etc.The new model combines a bidirectional Long-Short Term Memory Neural Network(BiLSTM)or a bidirectional Gate Recurrent United(BiGRU)and a Multi-Head attention mechanism module with convolution.A normalization layer is added after the output of the final hidden layer.BiLSTM or BiGRU is used to build the encoding and decoding layer.Multi-head attention mechanism module with convolution(MHAC)enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences.A fraudulent phone text dataset is produced by us in this paper.The THUCNews data sets and fraudulent phone text data sets are used in experiments.Experiment results show that compared with the baseline model,the proposed model(LMHACL)has the best experiment results in terms of Accuracy,Precision,Recall,and F1 score on the two data sets.And the performance indexes on fraudulent phone text data sets are all above 0.94.展开更多
For external cavity semiconductor lasers(ECSLs),high coupling efficiency is critical to reducing the linewidth.In this paper,the coupling efficiency between the laser diode and the waveguide grating has been improved,...For external cavity semiconductor lasers(ECSLs),high coupling efficiency is critical to reducing the linewidth.In this paper,the coupling efficiency between the laser diode and the waveguide grating has been improved,with proposals for its improvement presented,including adding spot-size conversion(SSC)and using a silicon-on-insulator(SOI)waveguide.The results indicate an increase of coupling efficiency from 41.5%to 93.1%,which exhibits an improvement of approximately 51.6%over conventional schemes.The relationship between coupling efficiency and SOI waveguide structures is mainly concerned in this article.These findings provide a new way for the future research of the narrow linewidth of ECSL.展开更多
In order to improve the recovery rate of rare earth,the effect of P_(2)O_(5) and cooling rate on the selective precipitation of CaO-SiO_(2)-TiO_(2)-P_(2)O_(5)-Nb_(2)O_(5)-CeO_(2)-CaF_(2) slag system was explored using...In order to improve the recovery rate of rare earth,the effect of P_(2)O_(5) and cooling rate on the selective precipitation of CaO-SiO_(2)-TiO_(2)-P_(2)O_(5)-Nb_(2)O_(5)-CeO_(2)-CaF_(2) slag system was explored using X-ray powder diffraction,a scanning electron microscope,an electron probe micro-analyzer and a confocal laser scanning microscope.The apatite(Ca_(2.02)Ce_(7.98)Si_(6.00)O_(26.00))is tiny and difficult to be separated from the slag without P_(2)O_(5).When the addition of P_(2)O_(5) is 6 wt%-10 wt%,the cerium and phosphorus are found to be enriched in britholite(Ca_(5-x)Ce_(x)[(SiO_(4))_(x)(PO_(4))_(3-x)]F)phase while x is negatively correlated with P_(2)O_(5) content in the slag.The influence of P_(2)O_(5) and cooling rate on the non-isothermal crystallization kinetics was also investigated.For the cooling rate between 5 and 40℃/min,continuous cooling transformation diagram of britholite was constructed when the P205 content is between 6 wt%-10 wt%.The modified Avrami model was applied to determine the crystallization mode of slag with 10 wt%P_(2)O_(5).It is shown that the crystallization mode is diffusion-controlled with constant nucleation rate and one-dimensional growth.In consideration of quantity and volume of crystals,the reasonable cooling rate is between 10and 30℃/min.展开更多
With the rapid development of space science projects,large deployable mechanisms have been widely used.However,due to the effects of mechanical friction and gravitational acceleration,on-orbit mechanisms cannot be alw...With the rapid development of space science projects,large deployable mechanisms have been widely used.However,due to the effects of mechanical friction and gravitational acceleration,on-orbit mechanisms cannot be always deployed to the expected pose.For some precision optical mechanisms,even a minor deviation can result in significant error,so it needs to be measured and corrected.In this paper,the deployment process was modeled and simplified as rotation under single-rotation-axis constraint and translation under single-direction constraint.To solve the problem,a method based on cross-ratio invariability was proposed.The proposed method does not rely on camera calibration techniques,as well as artificial marking points,both of which are necessary in PnP.Instead,only three calibration images before launch and a measurement image on orbit were required.Simulations and experiments demonstrated that the proposed method is more accurate than PnP.In addition,experiments also proved that the feasibility of the proposed method under dark conditions with the aid of a light source and some reflective marking points.展开更多
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金This researchwas funded by the Major Science and Technology Innovation Project of Shandong Province in China(2019JZZY010120).
文摘Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis.These algorithms are also suitable for fraudulent phone text recognition.Compared to these tasks,the semantics of fraudulent words are more complex and more difficult to distinguish.Recurrent Neural Networks(RNN),the variants ofRNN,ConvolutionalNeuralNetworks(CNN),and hybrid neural networks to extract text features are used by most text classification research.However,a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively.Therefore,a new model is proposed in this paper.In the fraudulent phone text,the knowledge that can be learned by the model includes the sequence structure of sentences,the correlation between words,the correlation of contextual semantics,the feature of keywords in sentences,etc.The new model combines a bidirectional Long-Short Term Memory Neural Network(BiLSTM)or a bidirectional Gate Recurrent United(BiGRU)and a Multi-Head attention mechanism module with convolution.A normalization layer is added after the output of the final hidden layer.BiLSTM or BiGRU is used to build the encoding and decoding layer.Multi-head attention mechanism module with convolution(MHAC)enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences.A fraudulent phone text dataset is produced by us in this paper.The THUCNews data sets and fraudulent phone text data sets are used in experiments.Experiment results show that compared with the baseline model,the proposed model(LMHACL)has the best experiment results in terms of Accuracy,Precision,Recall,and F1 score on the two data sets.And the performance indexes on fraudulent phone text data sets are all above 0.94.
文摘For external cavity semiconductor lasers(ECSLs),high coupling efficiency is critical to reducing the linewidth.In this paper,the coupling efficiency between the laser diode and the waveguide grating has been improved,with proposals for its improvement presented,including adding spot-size conversion(SSC)and using a silicon-on-insulator(SOI)waveguide.The results indicate an increase of coupling efficiency from 41.5%to 93.1%,which exhibits an improvement of approximately 51.6%over conventional schemes.The relationship between coupling efficiency and SOI waveguide structures is mainly concerned in this article.These findings provide a new way for the future research of the narrow linewidth of ECSL.
基金Project supported by the Major Projects of Inner Mongolia Natural Science Foundation (2018ZD07)Inner Mongolia Natural Science Foundation (2020BS05016)+2 种基金Open Project for Key Basic Research of the Inner Mongolia Autonomous Region (20140201)Open Project for Major Basic Research of Inner Mongolia (0406091701)Scientific Research Project of Inner Mongolia (ZDZX2018032)。
文摘In order to improve the recovery rate of rare earth,the effect of P_(2)O_(5) and cooling rate on the selective precipitation of CaO-SiO_(2)-TiO_(2)-P_(2)O_(5)-Nb_(2)O_(5)-CeO_(2)-CaF_(2) slag system was explored using X-ray powder diffraction,a scanning electron microscope,an electron probe micro-analyzer and a confocal laser scanning microscope.The apatite(Ca_(2.02)Ce_(7.98)Si_(6.00)O_(26.00))is tiny and difficult to be separated from the slag without P_(2)O_(5).When the addition of P_(2)O_(5) is 6 wt%-10 wt%,the cerium and phosphorus are found to be enriched in britholite(Ca_(5-x)Ce_(x)[(SiO_(4))_(x)(PO_(4))_(3-x)]F)phase while x is negatively correlated with P_(2)O_(5) content in the slag.The influence of P_(2)O_(5) and cooling rate on the non-isothermal crystallization kinetics was also investigated.For the cooling rate between 5 and 40℃/min,continuous cooling transformation diagram of britholite was constructed when the P205 content is between 6 wt%-10 wt%.The modified Avrami model was applied to determine the crystallization mode of slag with 10 wt%P_(2)O_(5).It is shown that the crystallization mode is diffusion-controlled with constant nucleation rate and one-dimensional growth.In consideration of quantity and volume of crystals,the reasonable cooling rate is between 10and 30℃/min.
基金Supported in part by the National Natural Science Foundation of China(No.62271148).
文摘With the rapid development of space science projects,large deployable mechanisms have been widely used.However,due to the effects of mechanical friction and gravitational acceleration,on-orbit mechanisms cannot be always deployed to the expected pose.For some precision optical mechanisms,even a minor deviation can result in significant error,so it needs to be measured and corrected.In this paper,the deployment process was modeled and simplified as rotation under single-rotation-axis constraint and translation under single-direction constraint.To solve the problem,a method based on cross-ratio invariability was proposed.The proposed method does not rely on camera calibration techniques,as well as artificial marking points,both of which are necessary in PnP.Instead,only three calibration images before launch and a measurement image on orbit were required.Simulations and experiments demonstrated that the proposed method is more accurate than PnP.In addition,experiments also proved that the feasibility of the proposed method under dark conditions with the aid of a light source and some reflective marking points.