Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was pr...Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was proposed by taking a martensitic 100Cr6 bearing steel as a model case.The microstructural transformations during tempering were studied using thermal analysis,transmission electron microscopy(TEM),and X-ray diffraction(XRD).Kinetics analysis of thermal evolution by employing the isoconver-sional method,and assisted by TEM and XRD characterization,were performed to quantitatively estimate the volume fractions of different phases after tempering.A series of isothermal tempering experiments were designed to verify the model.The predicted results were in good agreement with the experimental results of XRD and electrolytic extraction measurements.展开更多
Thermostatically controlled appliances(TCAs)have great thermal storage capability and are therefore excellent demand response(DR) resources to solve the problem of power fluctuation caused by renewable energy.Traditio...Thermostatically controlled appliances(TCAs)have great thermal storage capability and are therefore excellent demand response(DR) resources to solve the problem of power fluctuation caused by renewable energy.Traditional centralized management is affected by communication quality severely and thus usually has poor realtime control performance. To tackle this problem, a hierarchical and distributed control strategy for TCAs is established. In the proposed control strategy, target assignment has the feature of self-regulating, owing to the designed target assignment and compensating algorithm which can utilize DR resources maximally in the controlled regions and get better control effects. Besides, the model prediction strategy and customers’ responsive behavior model are integrated into the original optimal temperature regulation(OTR-O), and OTR-O will be evolved into improved optimal temperature regulation. A series of case studies have been given to demonstrate the control effectiveness of the proposed control strategy.展开更多
Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the the...Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51605355 and 52104381)the National Key R&D Program of China(No.2020YFA0714900)+2 种基金“111 Project”(No.B17034)the Innovative Research TeamDevelopment Program of Ministry of Education of China(No.IRT_17R83)the China Postdoctoral Science Foundation(No.2021M702539)and the State Key Laboratory for Advanced Metals and Materials.
文摘Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was proposed by taking a martensitic 100Cr6 bearing steel as a model case.The microstructural transformations during tempering were studied using thermal analysis,transmission electron microscopy(TEM),and X-ray diffraction(XRD).Kinetics analysis of thermal evolution by employing the isoconver-sional method,and assisted by TEM and XRD characterization,were performed to quantitatively estimate the volume fractions of different phases after tempering.A series of isothermal tempering experiments were designed to verify the model.The predicted results were in good agreement with the experimental results of XRD and electrolytic extraction measurements.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2015AA050403)National Natural Science Foundation of China (Nos. 51377117, 51407125, 51361135704)+3 种基金China-UK NSFC/EPSRC EV Grant (Nos. 5136113015, EP/L001039/1)‘‘131’’ Talent and Innovative Team of Tianjin City, State Grid Corporation of China (No. KJ16-1-42)Innovation Leading Talent Project of Qingdao, Shandong Province (No. 15-10-3-15-(43)-zch)Innovation and Entrepreneurship Development Funds Projects of Qingdao Blue Valley Core Area (No. 201503004)
文摘Thermostatically controlled appliances(TCAs)have great thermal storage capability and are therefore excellent demand response(DR) resources to solve the problem of power fluctuation caused by renewable energy.Traditional centralized management is affected by communication quality severely and thus usually has poor realtime control performance. To tackle this problem, a hierarchical and distributed control strategy for TCAs is established. In the proposed control strategy, target assignment has the feature of self-regulating, owing to the designed target assignment and compensating algorithm which can utilize DR resources maximally in the controlled regions and get better control effects. Besides, the model prediction strategy and customers’ responsive behavior model are integrated into the original optimal temperature regulation(OTR-O), and OTR-O will be evolved into improved optimal temperature regulation. A series of case studies have been given to demonstrate the control effectiveness of the proposed control strategy.
基金financially supported by the National Natural Science Foundation of China(Nos.51801141 and 51605356)the 111 Project(No.B17034)+1 种基金the Innovative Research Team Development Program of Ministry of Education of China(No.IRT17R83)the Fundamental Research Funds for the Central Universities(No.WUT:2017IVB035)。
文摘Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.