Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capi...Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capillary and van der Waals forces, between a tip and a surface is established. It is described by a power law that considers the geometry, the liquid bridge wetting radius, the contact angle, and the separation distance. Capillary forces (sum of surface tension and Laplace pressure) and van der Waals forces are calculated. The latter cannot be neglected in the adhesion even at high humidity. Decrease in adhesion with increasing relative humidity can be attributed to a blunt tip shape, which is validated by experimental data. Specifically, the decrease in adhesion is attributed primarily to a transition from a rounded to a blunt tip shape. Structuring objects at the micro- or nanoscale can either increase or decrease adhesion as a function of relative humidity. This has a wide range of applications in robotic manipulation and can provide a better understanding of adhesion mechanisms in atomic force microscopy in ambient air.展开更多
A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's mod...A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's modulus is derived and metal wires are loaded strain by using the static stretching method. The Young's modulus of copper wires, aluminum wires, nickel wires, and tungsten wires are separately measured. Experimental results show that the FBG sensor exhibits high measurement accuracy, and the measurement errors relative to the nominal value is less than 1.0%. The feasibility of the FBG test method is confirmed by comparing it with the traditional charge coupled device (CCD) imaging method. The proposed method could find the potential application in the material selection, especially in the field that the size of metal wires is very small and the strain gauges cannot be qualified.展开更多
文摘Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capillary and van der Waals forces, between a tip and a surface is established. It is described by a power law that considers the geometry, the liquid bridge wetting radius, the contact angle, and the separation distance. Capillary forces (sum of surface tension and Laplace pressure) and van der Waals forces are calculated. The latter cannot be neglected in the adhesion even at high humidity. Decrease in adhesion with increasing relative humidity can be attributed to a blunt tip shape, which is validated by experimental data. Specifically, the decrease in adhesion is attributed primarily to a transition from a rounded to a blunt tip shape. Structuring objects at the micro- or nanoscale can either increase or decrease adhesion as a function of relative humidity. This has a wide range of applications in robotic manipulation and can provide a better understanding of adhesion mechanisms in atomic force microscopy in ambient air.
基金the National Natural Science Foundation of China under Grant No. 61565002Guangxi Province Key Research and Development Program under Grant Nos. AB 17129027 and AB18221033.
文摘A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's modulus is derived and metal wires are loaded strain by using the static stretching method. The Young's modulus of copper wires, aluminum wires, nickel wires, and tungsten wires are separately measured. Experimental results show that the FBG sensor exhibits high measurement accuracy, and the measurement errors relative to the nominal value is less than 1.0%. The feasibility of the FBG test method is confirmed by comparing it with the traditional charge coupled device (CCD) imaging method. The proposed method could find the potential application in the material selection, especially in the field that the size of metal wires is very small and the strain gauges cannot be qualified.