Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison o...Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.展开更多
Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-r...Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-receptor interactions using information derived only from the ligand structure to identify new potential lead compounds. The present studies demonstrated that three hydrophobic regions, one positive ionizable region and two hydrogen bond acceptor region sites located on the molecule seem to be essential for analgesic activity. The results of the comparative molecular field analysis model suggested that both steric and electrostatic interactions play important roles. The contributions from steric and electrostatic fields for the model were 0.621 and 0.379, respectively. The pharmacophore model provides crucial information about how well the common features of a subject molecule overlap with the hypothesis model, which is very valuable for designing and optimizing new active structures.展开更多
Aims A decrease in species diversity after fertilization is a common phenomenon in grasslands;however,the mechanism causing it remains highly controversial.The light competition hypothesis to explain loss of diversity...Aims A decrease in species diversity after fertilization is a common phenomenon in grasslands;however,the mechanism causing it remains highly controversial.The light competition hypothesis to explain loss of diversity has received much attention.The aim of the present paper was to test this hypothesis.Methods Fertilization was used to control above-and belowground resources simultaneously,while shade was used to control aboveground resource in an alpine meadow on the Tibetan Plateau.Univariate general linear models was used to estimate the effects of fertilization and shade on above-and belowground vegetation characteristics,including photosynthetically active radiation(PAR)in the understory,aboveground biomass,belowground biomass,R:S ratio,species richness and Simpson’s diversity index.Important findings PAR was similar in the understory of shaded and fertilized plots,but only fertilization reduced species richness and diversity,suggesting that light competition alone could not explain diversity loss after fertilization.The root biomass and R:S ratio had a significant increase in shaded plots,but the richness and diversity did not change,suggesting that root competition alone also could not explain diversity loss after fertilization in this community.Our results illustrated that the root–shoot competition interactions,investigated from a functional groups perspective,should be the most reasonable explanation leading to the diversity loss due to fertilization.展开更多
Ataxia-telangiectasia mutated(ATM)plays a key role in regulating the cellular response to ionizing radiation.The tumor-suppressor gene ATM,mutations in which cause the human genetic disease ataxia telangiecta-sia,enco...Ataxia-telangiectasia mutated(ATM)plays a key role in regulating the cellular response to ionizing radiation.The tumor-suppressor gene ATM,mutations in which cause the human genetic disease ataxia telangiecta-sia,encodes a key protein kinase that controls the cellular response to double-stranded breaks.Activation of ATM results in phosphorylation of many downstream targets that modulate numerous damage response pathways,most notably cell cycle checkpoints.Here,we highlight some of the new developments in thefield in our understanding of the mechanism of activation of ATM and its signaling pathways,explore whether DNA double-strand breaks are the sole activators of ATM and ATM-dependent signaling pathways,and address some of the prominent,unanswered questions related to ATM and its function.The scope of this article is to provide a brief overview of the recent literature on this subject and to raise questions that could be addressed in future studies.展开更多
基金supported by the National Natural Science Foundation of China(Molecular design,catalysis and synthesis methods of novel fentanyl analogs active compounds)No.20872095
文摘Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.
基金supported by the National Natural Science Foundation of China,No.20872095
文摘Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-receptor interactions using information derived only from the ligand structure to identify new potential lead compounds. The present studies demonstrated that three hydrophobic regions, one positive ionizable region and two hydrogen bond acceptor region sites located on the molecule seem to be essential for analgesic activity. The results of the comparative molecular field analysis model suggested that both steric and electrostatic interactions play important roles. The contributions from steric and electrostatic fields for the model were 0.621 and 0.379, respectively. The pharmacophore model provides crucial information about how well the common features of a subject molecule overlap with the hypothesis model, which is very valuable for designing and optimizing new active structures.
基金Key Program of National Natural Science Foundation of China(No.40930533).
文摘Aims A decrease in species diversity after fertilization is a common phenomenon in grasslands;however,the mechanism causing it remains highly controversial.The light competition hypothesis to explain loss of diversity has received much attention.The aim of the present paper was to test this hypothesis.Methods Fertilization was used to control above-and belowground resources simultaneously,while shade was used to control aboveground resource in an alpine meadow on the Tibetan Plateau.Univariate general linear models was used to estimate the effects of fertilization and shade on above-and belowground vegetation characteristics,including photosynthetically active radiation(PAR)in the understory,aboveground biomass,belowground biomass,R:S ratio,species richness and Simpson’s diversity index.Important findings PAR was similar in the understory of shaded and fertilized plots,but only fertilization reduced species richness and diversity,suggesting that light competition alone could not explain diversity loss after fertilization.The root biomass and R:S ratio had a significant increase in shaded plots,but the richness and diversity did not change,suggesting that root competition alone also could not explain diversity loss after fertilization in this community.Our results illustrated that the root–shoot competition interactions,investigated from a functional groups perspective,should be the most reasonable explanation leading to the diversity loss due to fertilization.
基金support of the National Natural Science Foundation of China(Grant No.20872095)was gratefully acknowledged.
文摘Ataxia-telangiectasia mutated(ATM)plays a key role in regulating the cellular response to ionizing radiation.The tumor-suppressor gene ATM,mutations in which cause the human genetic disease ataxia telangiecta-sia,encodes a key protein kinase that controls the cellular response to double-stranded breaks.Activation of ATM results in phosphorylation of many downstream targets that modulate numerous damage response pathways,most notably cell cycle checkpoints.Here,we highlight some of the new developments in thefield in our understanding of the mechanism of activation of ATM and its signaling pathways,explore whether DNA double-strand breaks are the sole activators of ATM and ATM-dependent signaling pathways,and address some of the prominent,unanswered questions related to ATM and its function.The scope of this article is to provide a brief overview of the recent literature on this subject and to raise questions that could be addressed in future studies.