This paper focus on solving the problem of seafloor control point absolute positioning with low vertical accuracy based on the survey ship sailing circle. The method of dealing with the systematic error based on a sem...This paper focus on solving the problem of seafloor control point absolute positioning with low vertical accuracy based on the survey ship sailing circle. The method of dealing with the systematic error based on a semi-parametric adjustment model was proposed. Firstly, the influence of sound velocity change on ranging error is analyzed. Secondly, a semi-parametric adjustment model for determining three-dimensional coordinates of seafloor control points was established. And respectively proposed solutions under two different conditions, the observation duration is an integral multiple or non-integer multiple of the long-period term of the ranging error. The simulation experiment shows that this method can obviously improve the accuracy of vertical solution of seafloor control point compared with the difference technique and the least-squares method when internal waves exist and observation duration is less than an integer multiple of the long-period term of the ranging error.展开更多
High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,si...High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,silicon nitride(Si_(3)N_(4)))thermal reduction with soft mechanochemical assistance.The results show that metal oxides like hafnium dioxide(HfO_(2)),zirconium dioxide(ZrO_(2)),titanium dioxide(TiO_(2)),niobium pentoxide(Nb_(2)O_(5)),and tantalum pentoxide(Ta_(2)O_(5))can all be transformed into the corresponding metal nitrides in the presence of Si_(3)N_(4)at 1700℃,and solid solution of the metal nitrides can be formed as the temperature increases to 2100℃.The high-entropy(HfZrTiNbTa)N powders with submicron-sized particles,a narrower size distribution,and a single face-centered cubic(fcc)structure are obtained from raw material mixtures ground for 10 h and subsequently sintered at 1800℃.In addition,the high-entropy bulk nitride ceramics with relative density(Rw)of 94.31%±0.76%,Vickers hardness of 21.00±0.94 GPa,and fracture toughness(KIC)of 3.18±0.16 MPa·m1/2 are obtained with submicron-sized powders,which are superior to those obtained with micron-sized powders.展开更多
基金The National Key Research and Development Program of China(No.2016YFB0501701)The National High-tech Research and Development Program of China(No.2013AA122501)+1 种基金National Natural Science Foundation of China(Nos.4187610341874016)。
文摘This paper focus on solving the problem of seafloor control point absolute positioning with low vertical accuracy based on the survey ship sailing circle. The method of dealing with the systematic error based on a semi-parametric adjustment model was proposed. Firstly, the influence of sound velocity change on ranging error is analyzed. Secondly, a semi-parametric adjustment model for determining three-dimensional coordinates of seafloor control points was established. And respectively proposed solutions under two different conditions, the observation duration is an integral multiple or non-integer multiple of the long-period term of the ranging error. The simulation experiment shows that this method can obviously improve the accuracy of vertical solution of seafloor control point compared with the difference technique and the least-squares method when internal waves exist and observation duration is less than an integer multiple of the long-period term of the ranging error.
基金supported by the National Natural Science Foundation of China(Nos.51662002,51762002,and 52104358)Graduate Student Innovation Program(No.YCX22138)the Key Research and Development Program of Ningxia,China(No.2019BFH02021)。
文摘High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,silicon nitride(Si_(3)N_(4)))thermal reduction with soft mechanochemical assistance.The results show that metal oxides like hafnium dioxide(HfO_(2)),zirconium dioxide(ZrO_(2)),titanium dioxide(TiO_(2)),niobium pentoxide(Nb_(2)O_(5)),and tantalum pentoxide(Ta_(2)O_(5))can all be transformed into the corresponding metal nitrides in the presence of Si_(3)N_(4)at 1700℃,and solid solution of the metal nitrides can be formed as the temperature increases to 2100℃.The high-entropy(HfZrTiNbTa)N powders with submicron-sized particles,a narrower size distribution,and a single face-centered cubic(fcc)structure are obtained from raw material mixtures ground for 10 h and subsequently sintered at 1800℃.In addition,the high-entropy bulk nitride ceramics with relative density(Rw)of 94.31%±0.76%,Vickers hardness of 21.00±0.94 GPa,and fracture toughness(KIC)of 3.18±0.16 MPa·m1/2 are obtained with submicron-sized powders,which are superior to those obtained with micron-sized powders.