Background: Forests are an important component of the global carbon(C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest ...Background: Forests are an important component of the global carbon(C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest productivity is often inferred from national-scale yield tables or from satellite products, forest C emissions resulting from dead organic matter decay are usually simulated, therefore it is important to ensure the accuracy and reliability of a model used to simulate organic matter decay at an appropriate scale. National Forest Inventories(NFIs) provide a record of carbon pools in ecosystem components, and these measurements are essential for evaluating rates and controls of C dynamics in forest ecosystems. In this study we combine the observations from the Swiss NFIs and machine learning techniques to quantify the decay rates of the standing snags and downed logs and identify the main controls of dead wood decay.Results: We found that wood decay rate was affected by tree species, temperature, and precipitation. Dead wood originating from Fagus sylvatica decayed the fastest, with the residence times ranging from 27 to 54 years at the warmest and coldest Swiss sites, respectively. Hardwoods at wetter sites tended to decompose faster compared to hardwoods at drier sites, with residence times 45–92 and 62–95 years for the wetter and drier sites, respectively.Dead wood originating from softwood species had the longest residence times ranging from 58 to 191 years at wetter sites and from 78 to 286 years at drier sites.Conclusions: This study illustrates how long-term dead wood observations collected and remeasured during several NFI campaigns can be used to estimate dead wood decay parameters, as well as gain understanding about controls of dead wood dynamics. The wood decay parameters quantified in this study can be used in carbon budget models to simulate the decay dynamics of dead wood, however more measurements(e.g. of soil C dynamics at the same plots) are needed to estimate what fraction of dead wood is converted to CO2, and what fraction is incorporated into soil.展开更多
基金financial support from the Swiss Federal Office for the Environmentfinancial support from the Canadian Forest ServiceNatural Resources Canada。
文摘Background: Forests are an important component of the global carbon(C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest productivity is often inferred from national-scale yield tables or from satellite products, forest C emissions resulting from dead organic matter decay are usually simulated, therefore it is important to ensure the accuracy and reliability of a model used to simulate organic matter decay at an appropriate scale. National Forest Inventories(NFIs) provide a record of carbon pools in ecosystem components, and these measurements are essential for evaluating rates and controls of C dynamics in forest ecosystems. In this study we combine the observations from the Swiss NFIs and machine learning techniques to quantify the decay rates of the standing snags and downed logs and identify the main controls of dead wood decay.Results: We found that wood decay rate was affected by tree species, temperature, and precipitation. Dead wood originating from Fagus sylvatica decayed the fastest, with the residence times ranging from 27 to 54 years at the warmest and coldest Swiss sites, respectively. Hardwoods at wetter sites tended to decompose faster compared to hardwoods at drier sites, with residence times 45–92 and 62–95 years for the wetter and drier sites, respectively.Dead wood originating from softwood species had the longest residence times ranging from 58 to 191 years at wetter sites and from 78 to 286 years at drier sites.Conclusions: This study illustrates how long-term dead wood observations collected and remeasured during several NFI campaigns can be used to estimate dead wood decay parameters, as well as gain understanding about controls of dead wood dynamics. The wood decay parameters quantified in this study can be used in carbon budget models to simulate the decay dynamics of dead wood, however more measurements(e.g. of soil C dynamics at the same plots) are needed to estimate what fraction of dead wood is converted to CO2, and what fraction is incorporated into soil.