The control of the Kondo effect is of great interest in single-molecule junction due to its potential applications in spin based electronics.Here,we demonstrate that the Kondo effect is reversibly switched on and off ...The control of the Kondo effect is of great interest in single-molecule junction due to its potential applications in spin based electronics.Here,we demonstrate that the Kondo effect is reversibly switched on and off in an iron phthalocyanine(FePc)single-molecule junction by using a superconducting Nb tip.In a scanning tunneling microscope-based Nb-insulator-FePc-Au junction,we achieve a reversible switching between the Kondo dip and inelastic electronic tunneling spectra by simply adjusting the tip-sample distance to tune the tunnel coupling at low temperature.Further approaching the tip leads to the picking up of the molecule to the tip apex,which transfers the geometry of the single-molecule junction into a Nb-FePc-insulator-Au type.As the molecule forms an effective magnetic impurity embedded into the superconducting ground states of the Nb tip,the out-gap Kondo dip switched to an in-gap Yu-Shiba-Rusinov state.Our results open up a new route for manipulating the Kondo effect within a single-molecule junction.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2019YFA0308500 and 2018YFA0305800)the National Natural Science Foundation of China(Nos.52022105 and 61888102)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000 and XDB30000000)。
文摘The control of the Kondo effect is of great interest in single-molecule junction due to its potential applications in spin based electronics.Here,we demonstrate that the Kondo effect is reversibly switched on and off in an iron phthalocyanine(FePc)single-molecule junction by using a superconducting Nb tip.In a scanning tunneling microscope-based Nb-insulator-FePc-Au junction,we achieve a reversible switching between the Kondo dip and inelastic electronic tunneling spectra by simply adjusting the tip-sample distance to tune the tunnel coupling at low temperature.Further approaching the tip leads to the picking up of the molecule to the tip apex,which transfers the geometry of the single-molecule junction into a Nb-FePc-insulator-Au type.As the molecule forms an effective magnetic impurity embedded into the superconducting ground states of the Nb tip,the out-gap Kondo dip switched to an in-gap Yu-Shiba-Rusinov state.Our results open up a new route for manipulating the Kondo effect within a single-molecule junction.