In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (...In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by cryoturbation, and a broad bioclimatic gradient. We also characterize total biomass of soil microorganisms and the most probable number of bacteria along a topographic gradient within each bioclimatic subzone to evaluate whether differences in topography lead to differences in microbial dynamics at a smaller scale. We found total microbial biomass C, the most probable number of heterotrophic bacteria, and fungal genera vary along this bioclimatic gradient. Microbial biomass C decreased with increasing latitude. Overall, microbial biomass C, MPN and the number of fungal isolates were higher in AVS than in PGFs. The effects which topographic position had on microbial biomass C varied across the bioclimatic gradient as there was no effect of topographic position in Isachsen (subzone A) and Mould Bay (subzone B), when compared to Green Cabin (subzone C, warmer site).There was no effect of topographic position on MPN counts at Mould Bay and Green Cabin. However, in Isachsen, MPN counts were highest in the wet topographic position as compared to the mesic and dry. In conclusion, PGFs seem to decouple the effect climate that might have on the total biomass of soil microorganisms along the bioclimatic gradient;and influence gets ameliorated as latitude increases. Similarly, the effect of topography on the total microbial biomass is significant at the warmest bioclimatic zone of the gradient. Thus, climate and topographic effects on total microbial biomass increase with warmer climate.展开更多
Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with...Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with contrasting vegetation types or landscape age. In this work we assess the effect of landscape age on physico-chemical parameters in organic and mineral soils from two long-term research sites in northern Alaska, the Toolik Lake and Imnavait grids. These two sites have contrasting landscape age but similar vegetation composition. We also used correlation analysis to evaluate if differences in any of these parameters were linked with between-site variation in the abundance of growth forms. Our analysis was narrowed to soils in Sphagno-Eriophoretum vaginati plant communities. We found no significant differences between these sites for most parameters evaluated, except for total Ca which was significantly higher in organic soils from Imnavait vs. Toolik and total Na which was significantly higher in mineral horizons from Toolik compared to Imnavait. Moreover, the abundance of non-Sphagnum mosses was positively correlated with total Ca in organic soils, whereas the abundance of forbs, non-Sphagnum mosses and bryophytes was negatively correlated with total Na in mineral soils. We suggest that differences in the concentration of these two elements are most likely tied to landscape age differences between these sites. However, since observed dissimilarity in terms of total Ca in organic soils and total Na in mineral soils is concordant with correlation patterns observed between these elements and the aforementioned growth forms, it is likely that existing differences in vegetation composition between these sites are also influencing the concentration of these elements in soils, particularly that of Ca, since non-Sphagnum mosses are dominant above organic soils and are therefore expected to significantly influence biogeochemical processes at this horizon. Thus, we conclude that except for organic Ca and mineral Na, there is little difference between these sites in terms of their soil physico-chemical properties. We suggest that most of the influence of landscape age on evaluated parameters is masked by factors such as moderate cryoturbation and similarities in terms of vegetation properties and climate. These observations are relevant as they suggest a linkage between soil chemistry and vegetation composition in this tundra region.展开更多
文摘In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by cryoturbation, and a broad bioclimatic gradient. We also characterize total biomass of soil microorganisms and the most probable number of bacteria along a topographic gradient within each bioclimatic subzone to evaluate whether differences in topography lead to differences in microbial dynamics at a smaller scale. We found total microbial biomass C, the most probable number of heterotrophic bacteria, and fungal genera vary along this bioclimatic gradient. Microbial biomass C decreased with increasing latitude. Overall, microbial biomass C, MPN and the number of fungal isolates were higher in AVS than in PGFs. The effects which topographic position had on microbial biomass C varied across the bioclimatic gradient as there was no effect of topographic position in Isachsen (subzone A) and Mould Bay (subzone B), when compared to Green Cabin (subzone C, warmer site).There was no effect of topographic position on MPN counts at Mould Bay and Green Cabin. However, in Isachsen, MPN counts were highest in the wet topographic position as compared to the mesic and dry. In conclusion, PGFs seem to decouple the effect climate that might have on the total biomass of soil microorganisms along the bioclimatic gradient;and influence gets ameliorated as latitude increases. Similarly, the effect of topography on the total microbial biomass is significant at the warmest bioclimatic zone of the gradient. Thus, climate and topographic effects on total microbial biomass increase with warmer climate.
文摘Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with contrasting vegetation types or landscape age. In this work we assess the effect of landscape age on physico-chemical parameters in organic and mineral soils from two long-term research sites in northern Alaska, the Toolik Lake and Imnavait grids. These two sites have contrasting landscape age but similar vegetation composition. We also used correlation analysis to evaluate if differences in any of these parameters were linked with between-site variation in the abundance of growth forms. Our analysis was narrowed to soils in Sphagno-Eriophoretum vaginati plant communities. We found no significant differences between these sites for most parameters evaluated, except for total Ca which was significantly higher in organic soils from Imnavait vs. Toolik and total Na which was significantly higher in mineral horizons from Toolik compared to Imnavait. Moreover, the abundance of non-Sphagnum mosses was positively correlated with total Ca in organic soils, whereas the abundance of forbs, non-Sphagnum mosses and bryophytes was negatively correlated with total Na in mineral soils. We suggest that differences in the concentration of these two elements are most likely tied to landscape age differences between these sites. However, since observed dissimilarity in terms of total Ca in organic soils and total Na in mineral soils is concordant with correlation patterns observed between these elements and the aforementioned growth forms, it is likely that existing differences in vegetation composition between these sites are also influencing the concentration of these elements in soils, particularly that of Ca, since non-Sphagnum mosses are dominant above organic soils and are therefore expected to significantly influence biogeochemical processes at this horizon. Thus, we conclude that except for organic Ca and mineral Na, there is little difference between these sites in terms of their soil physico-chemical properties. We suggest that most of the influence of landscape age on evaluated parameters is masked by factors such as moderate cryoturbation and similarities in terms of vegetation properties and climate. These observations are relevant as they suggest a linkage between soil chemistry and vegetation composition in this tundra region.