期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Autonomous Changes in the Concentration of Water Vapor Drive Climate Change
1
作者 william a. van brunt 《Atmospheric and Climate Sciences》 2020年第4期443-508,共66页
When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate ch... When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation. 展开更多
关键词 Carbon Dioxide Climate Change Water Vapor Global Warming DRIVER Average Global Temperature Change in Concentration Water Vapor Water Vapor Heating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部