Feature detection in chemical sensors images falls under the general topic of mathematical morphology, where the goal is to detect “image objects” e.g. peaks or spots in an image. Here, we propose a novel method for...Feature detection in chemical sensors images falls under the general topic of mathematical morphology, where the goal is to detect “image objects” e.g. peaks or spots in an image. Here, we propose a novel method for object detection that can be generalized for a k-dimensional object obtained from an analogous higher-dimensional technology source. Our method is based on the smoothing decomposition, Data = Smooth + Rough, where the “rough” (i.e. residual) object from a k-dimensional cross-shaped smoother provides information for object detection. We demonstrate properties of this procedure with chemical sensor applications from various biological fields, including genetic and proteomic data analysis.展开更多
文摘Feature detection in chemical sensors images falls under the general topic of mathematical morphology, where the goal is to detect “image objects” e.g. peaks or spots in an image. Here, we propose a novel method for object detection that can be generalized for a k-dimensional object obtained from an analogous higher-dimensional technology source. Our method is based on the smoothing decomposition, Data = Smooth + Rough, where the “rough” (i.e. residual) object from a k-dimensional cross-shaped smoother provides information for object detection. We demonstrate properties of this procedure with chemical sensor applications from various biological fields, including genetic and proteomic data analysis.