A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmenta...A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmental and biodiversity indicators. By providing weightage to these indicators, a “River Basin Sustainability Index” is built. The watershed sustainability is then calculated based on the concepts of reliability, resilience and vulnerability. The framework is then applied to a case study, where, based on watershed management principles, four land use scenarios are created in GIS. The Soil and Water Assessment Tool (SWAT) is used as a hydrology/water quality model. Based on the results the land uses are ranked for sustainability and policy implications have been discussed. This results show that landuse (both type and location) impact watershed sustainability. The existing land use is weak in environmental sustainability. Also, riparian zones play a critical role in watershed sustainability, although beyond certain width their contribution is not significant.展开更多
The Inland Bays in southern Delaware (USA) are facing eutrophication due to the nutrient loading from its watershed. The source of nutrients in the watershed is predominantly agriculture. The Millsboro Pond, a sub-wat...The Inland Bays in southern Delaware (USA) are facing eutrophication due to the nutrient loading from its watershed. The source of nutrients in the watershed is predominantly agriculture. The Millsboro Pond, a sub-watershed within the Inland Bays basin, was modeled using the Soil and Water Assessment Tool (SWAT) model. It was found that the contribution of ground water from outside the watershed had a signifi-cant impact on the hydrology of the region. Once the model was calibrated and validated, five management scenarios were implemented, one at a time, to measure its effectiveness in reducing the nutrient loading in the watershed. Among the Best Management Practices (BMPs), planting winter cover crops on the agricul-ture land was the most effective method in reducing the nutrient loads. The second most effective method was to provide grassland riparian zones. The BMPs alone were not able to achieve the nutrient load reduc-tion as required by the Total Maximum Daily Loads (TMDLs). Two extra scenarios that involved in replac-ing agriculture land with forest, first with deciduous trees and then with high yielding trees were considered. It is suggested that to achieve the required TMDL for the watershed, some parts of the agricultural land may have to be effectively converted into the managed forest with some high yielding trees such as hybrid poplar trees providing cellulose raw material for bio fuels. The remaining agriculture land should take up the prac-tice of planting winter cover crops and better nutrient management. Riparian zones, either in form of forest or grasslands, should be the final line of defense for reducing nutrient loading in the watershed.展开更多
文摘A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmental and biodiversity indicators. By providing weightage to these indicators, a “River Basin Sustainability Index” is built. The watershed sustainability is then calculated based on the concepts of reliability, resilience and vulnerability. The framework is then applied to a case study, where, based on watershed management principles, four land use scenarios are created in GIS. The Soil and Water Assessment Tool (SWAT) is used as a hydrology/water quality model. Based on the results the land uses are ranked for sustainability and policy implications have been discussed. This results show that landuse (both type and location) impact watershed sustainability. The existing land use is weak in environmental sustainability. Also, riparian zones play a critical role in watershed sustainability, although beyond certain width their contribution is not significant.
文摘The Inland Bays in southern Delaware (USA) are facing eutrophication due to the nutrient loading from its watershed. The source of nutrients in the watershed is predominantly agriculture. The Millsboro Pond, a sub-watershed within the Inland Bays basin, was modeled using the Soil and Water Assessment Tool (SWAT) model. It was found that the contribution of ground water from outside the watershed had a signifi-cant impact on the hydrology of the region. Once the model was calibrated and validated, five management scenarios were implemented, one at a time, to measure its effectiveness in reducing the nutrient loading in the watershed. Among the Best Management Practices (BMPs), planting winter cover crops on the agricul-ture land was the most effective method in reducing the nutrient loads. The second most effective method was to provide grassland riparian zones. The BMPs alone were not able to achieve the nutrient load reduc-tion as required by the Total Maximum Daily Loads (TMDLs). Two extra scenarios that involved in replac-ing agriculture land with forest, first with deciduous trees and then with high yielding trees were considered. It is suggested that to achieve the required TMDL for the watershed, some parts of the agricultural land may have to be effectively converted into the managed forest with some high yielding trees such as hybrid poplar trees providing cellulose raw material for bio fuels. The remaining agriculture land should take up the prac-tice of planting winter cover crops and better nutrient management. Riparian zones, either in form of forest or grasslands, should be the final line of defense for reducing nutrient loading in the watershed.