AIM: To discuss the advantages of ultra-high field (7T) for 1H and 13C magnetic resonance spectroscopy (MRS) studies of metabolism.METHODS: Measurements of brain metabolites were made at both 3 and 7T using 1H MRS. Me...AIM: To discuss the advantages of ultra-high field (7T) for 1H and 13C magnetic resonance spectroscopy (MRS) studies of metabolism.METHODS: Measurements of brain metabolites were made at both 3 and 7T using 1H MRS. Measurements of glycogen and lipids in muscle were measured using 13C and 1H MRS respectively.RESULTS: In the brain, increased signal-to-noise ratio (SNR) and dispersion allows spectral separation of the amino-acids glutamate, glutamine and γ-aminobutyric acid (GABA), without the need for sophisticated editing sequences. Improved quantification of these metabolites is demonstrated at 7T relative to 3T. SNR was 36% higher, and measurement repeatability (% coefficients of variation) was 4%, 10% and 10% at 7T, vs 8%, 29% and 21% at 3T for glutamate, glutamine and GABA respectively. Measurements at 7T were used to compare metabolite levels in the anterior cingulate cortex (ACC) and insula. Creatine and glutamate levels were found to be significantly higher in the insula compared to the ACC (P < 0.05). In muscle, the increased SNR and spectral resolution at 7T enables interleaved studies of glycogen (13C) and intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) (1H) following exercise and re-feeding. Glycogen levels were significantly decreased following exercise (-28% at 50% VO2 max; -58% at 75% VO2 max). Interestingly, levels of glycogen in the hamstrings followed those in the quadriceps, despite reduce exercise loading. No changes in IMCL and EMCL were found in the study.CONCLUSION: The demonstrated improvements in brain and muscle MRS measurements at 7T will increase the potential for use in investigating human metabolism and changes due to pathologies.展开更多
基金Supported by The Haldane-Spearman Consortium for PhD funding for Dr. Gunner F, Swecarb AB for provision of the carbo-hydrate drink,and Pfizer for funding the 1H Repeatability work Dr.Stephenson M was supported by the University of Notting-ham’s Mansfield Fellowship scheme+2 种基金7T work was supported by grant G9900259 from the Medical Research CouncilPfizer and grant G0901321 from the Medical Research CouncilThe 7 T MR Scanner in Nottingham, was funded by a Joint Infrastructure Fund Grant from the Wellcome Trust UK
文摘AIM: To discuss the advantages of ultra-high field (7T) for 1H and 13C magnetic resonance spectroscopy (MRS) studies of metabolism.METHODS: Measurements of brain metabolites were made at both 3 and 7T using 1H MRS. Measurements of glycogen and lipids in muscle were measured using 13C and 1H MRS respectively.RESULTS: In the brain, increased signal-to-noise ratio (SNR) and dispersion allows spectral separation of the amino-acids glutamate, glutamine and γ-aminobutyric acid (GABA), without the need for sophisticated editing sequences. Improved quantification of these metabolites is demonstrated at 7T relative to 3T. SNR was 36% higher, and measurement repeatability (% coefficients of variation) was 4%, 10% and 10% at 7T, vs 8%, 29% and 21% at 3T for glutamate, glutamine and GABA respectively. Measurements at 7T were used to compare metabolite levels in the anterior cingulate cortex (ACC) and insula. Creatine and glutamate levels were found to be significantly higher in the insula compared to the ACC (P < 0.05). In muscle, the increased SNR and spectral resolution at 7T enables interleaved studies of glycogen (13C) and intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) (1H) following exercise and re-feeding. Glycogen levels were significantly decreased following exercise (-28% at 50% VO2 max; -58% at 75% VO2 max). Interestingly, levels of glycogen in the hamstrings followed those in the quadriceps, despite reduce exercise loading. No changes in IMCL and EMCL were found in the study.CONCLUSION: The demonstrated improvements in brain and muscle MRS measurements at 7T will increase the potential for use in investigating human metabolism and changes due to pathologies.