The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional notion that the Alpine-Himalayan mountain ranges originated from the closure of a single, albeit comple...The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional notion that the Alpine-Himalayan mountain ranges originated from the closure of a single, albeit complex,oceanic domain-the Tethys. Instead, the present-day geological configuration of the Mediterranean region is the result of the creation and ensuing consumption of two major oceanic basins-the Paleotethys and the Neotethys-and of additional smaller oceanic basins within an overall regime of prolonged interaction between the Eurasian and the African-Arabian plates.In greater detail, there is still some debate about exactly what Tethys existed at what time. A consensus exists as to the presence of (i) a mainly Paleozoic paleotethyan ocean north of the Cimmerian continent(s); (ii) a younger late Paleozoic-Mesozoic neotethyan ocean located south of this continent, and finally ; ( iii ) a middle Jurassic ocean, the Alpine Tethys-Valais, an extension of the central Atlantic ocean in the western Tethyan domain. Additional late Paleozoic to Mesozoic back-arc marginal basins along the active Eurasian margin com-plicated somewhat this simple picture. The closure of these heterogeneous oceanic domains produced a sys-tem of connected yet discrete orogenic belts which vary in terms of timing, tectonic setting and internal archi-tecture, and cannot be interpreted as the end product of a single "Alpine" orogenic cycle.In Neogene time. following prolonged indentation along the Alpine front, a number of small continental microterranes (Kabylies, Balearic Islands, Sardinia-Cor-sica, Calabria) rifted off the Eurooean-lberian continan-tal margin and drifted toward south or southeast, leaving in their wake areas of thinned continental crust (e.g.Valencia Trough) or small oceanic basins (Algerian,Provencal and Tyrrhenian basins). The E Mediterranean is similarly characterized by widespread Neogene exten-sional tectonism, as indicated by thinning of continental crust along low-angle detachment faults in the Aegean Sea and the periaegean regions. Overall, Neogene exten-sion in the Mediterranean can be explained as the result of roll-back of the N-dipping subducting slab along the lonian-E Mediterranean subduction zones. The complex Neogene geologic scenario of the Mediterranean is com-plicated further by the deposition of widespread evapor-ites during Messinian (late Miocene) time.展开更多
Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synth...Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synthesize and integrate the vast disciplinary and national datasets which are available, it is necessary to implement maximum interaction among geoscientists of different backgrounds. The creation of project-oriented task forces in universities and other research institutions, as well as the development of large international cooperation programs, is instrumental in pursuing such a multidisciplinary and supranational approach. The TRANSMED Atlas, an official publication of the 32nd International Geological Congress (Florence 2004), is the result of an international scientific cooperation program which brought together for over two years sixtythree structural geologists, geophysicists, marine geologists, petrologists, sedimentologists, stratigraphers, paleogeographers, and petroleum geologists coming from eighteen countries, and working for the petroleum industry, academia, and other institutions, both public and private. The TRANSMED Atlas provides an updated, synthetic, and coherent portrayal of the overall geological-geophysical structure of the Mediterranean domain and the surrounding areas. The initial stimulus for the Atlas came from the realization of the extremely heterogeneous nature of the existing geological-geophysical data about such domain. These data have been gathered by universities, oil companies, geological surveys and other institutions in several countries, often using different procedures and standards. In addition, much of these data are written in languages and published in outlets that are not readily accessible to the general international reader. By synthesizing and integrating a wealth of preexisting and new data derived from surficial geology, seismic sections at various scales, and mantle tomographies, the TRANSMED Atlas provides for the first time a coherent geological overview of the Mediterranean region and represents an ideal springboard for future studies.展开更多
文摘The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional notion that the Alpine-Himalayan mountain ranges originated from the closure of a single, albeit complex,oceanic domain-the Tethys. Instead, the present-day geological configuration of the Mediterranean region is the result of the creation and ensuing consumption of two major oceanic basins-the Paleotethys and the Neotethys-and of additional smaller oceanic basins within an overall regime of prolonged interaction between the Eurasian and the African-Arabian plates.In greater detail, there is still some debate about exactly what Tethys existed at what time. A consensus exists as to the presence of (i) a mainly Paleozoic paleotethyan ocean north of the Cimmerian continent(s); (ii) a younger late Paleozoic-Mesozoic neotethyan ocean located south of this continent, and finally ; ( iii ) a middle Jurassic ocean, the Alpine Tethys-Valais, an extension of the central Atlantic ocean in the western Tethyan domain. Additional late Paleozoic to Mesozoic back-arc marginal basins along the active Eurasian margin com-plicated somewhat this simple picture. The closure of these heterogeneous oceanic domains produced a sys-tem of connected yet discrete orogenic belts which vary in terms of timing, tectonic setting and internal archi-tecture, and cannot be interpreted as the end product of a single "Alpine" orogenic cycle.In Neogene time. following prolonged indentation along the Alpine front, a number of small continental microterranes (Kabylies, Balearic Islands, Sardinia-Cor-sica, Calabria) rifted off the Eurooean-lberian continan-tal margin and drifted toward south or southeast, leaving in their wake areas of thinned continental crust (e.g.Valencia Trough) or small oceanic basins (Algerian,Provencal and Tyrrhenian basins). The E Mediterranean is similarly characterized by widespread Neogene exten-sional tectonism, as indicated by thinning of continental crust along low-angle detachment faults in the Aegean Sea and the periaegean regions. Overall, Neogene exten-sion in the Mediterranean can be explained as the result of roll-back of the N-dipping subducting slab along the lonian-E Mediterranean subduction zones. The complex Neogene geologic scenario of the Mediterranean is com-plicated further by the deposition of widespread evapor-ites during Messinian (late Miocene) time.
文摘Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synthesize and integrate the vast disciplinary and national datasets which are available, it is necessary to implement maximum interaction among geoscientists of different backgrounds. The creation of project-oriented task forces in universities and other research institutions, as well as the development of large international cooperation programs, is instrumental in pursuing such a multidisciplinary and supranational approach. The TRANSMED Atlas, an official publication of the 32nd International Geological Congress (Florence 2004), is the result of an international scientific cooperation program which brought together for over two years sixtythree structural geologists, geophysicists, marine geologists, petrologists, sedimentologists, stratigraphers, paleogeographers, and petroleum geologists coming from eighteen countries, and working for the petroleum industry, academia, and other institutions, both public and private. The TRANSMED Atlas provides an updated, synthetic, and coherent portrayal of the overall geological-geophysical structure of the Mediterranean domain and the surrounding areas. The initial stimulus for the Atlas came from the realization of the extremely heterogeneous nature of the existing geological-geophysical data about such domain. These data have been gathered by universities, oil companies, geological surveys and other institutions in several countries, often using different procedures and standards. In addition, much of these data are written in languages and published in outlets that are not readily accessible to the general international reader. By synthesizing and integrating a wealth of preexisting and new data derived from surficial geology, seismic sections at various scales, and mantle tomographies, the TRANSMED Atlas provides for the first time a coherent geological overview of the Mediterranean region and represents an ideal springboard for future studies.