The Olkaria geothermal field is located in the Kenya Rift valley, about 120 km from Nairobi. Geothermal activity is widespread in this rift with 14 major geothermal prospects being identified. Structures in the Greate...The Olkaria geothermal field is located in the Kenya Rift valley, about 120 km from Nairobi. Geothermal activity is widespread in this rift with 14 major geothermal prospects being identified. Structures in the Greater Olkaria volcanic complex include: the ring structure, the Ol’Njorowa gorge, the ENE-WSW Olkaria fault and N-S, NNE-SSW, NW-SE and WNW-ESE trending faults. The faults are more prominent in the East, Northeast and West Olkaria fields but are scarce in the Olkaria Domes area, possibly due to the thick pyroclastics cover. The NW-SE and WNW- ESE faults are thought to be the oldest and are associated with the development of the rift. The most prominent of these faults is the Gorge Farm fault, which bounds the geothermal fields in the northeastern part and extends to the Olkaria Domes area. The most recent structures are the N-S and the NNE-SSW faults. The geochemistry and output of the wells cut by these faults have a distinct characteristic that is the N-S, NW-SE and WNW-ESE faults are characterized by wells that have high Cl contents, temperatures and are good producers whereas the NE-SW faults, the Ring Structure and the Ol’Njorowa gorge appear to carry cool dilute waters with less chloride concentration and thus low performing wells. Though the impacts of these faults are apparent, there exists a gap in knowledge on how wide is the impact of these faults on the chemistry and performance of the wells. This paper therefore seeks to bridge this gap by analysis of the chemical trends of both old wells and newly drilled ones to evaluate the impacts of individual faults and then using buffering technique of ArcGis estimate how far and wide the influence of the faults is. The data was obtained after the sampling and analysis of discharge fluids of wells located on six profiles along the structures cutting through the field. Steam samples were collected with a stainless steel Webre separator connected between the wellhead and an atmospheric silencer on the discharging wells whereas the analysis was done in house in the KenGen geochemistry laboratory. The results indicates that Olkaria field has three categories of faults that control fluid flow that is the NW-SE trending faults that bring in high temperature and Cl rich waters, and the NE-SW trending Olkaria fracture tend to carry cool temperature waters that have led to decline in enthalpies of the wells it cuts through. The faults within the Ol Njorowa gorge act to carry cool, less mineralized water. Though initially, these effects were thought to be in shallow depths, an indication in OW-901 which is a deeper at 2200 m compared to 1600 m of OW-23 well that proves otherwise. This is, however, to be proved later as much deeper wells have been sited.展开更多
Acid treated diatomaceous earth (ATDE) from a mining site in Kenya was evaluated for its removal of F from aqueous solutions using adsorption batch experiments. The effect of initial F concentration, adsorbent dosage,...Acid treated diatomaceous earth (ATDE) from a mining site in Kenya was evaluated for its removal of F from aqueous solutions using adsorption batch experiments. The effect of initial F concentration, adsorbent dosage, contact time, temperature, pH and competing anions was studied. The adsorption process was very fast reaching an initial equilib- rium in just 10 min. Fluoride adsorption onto ATDE increased strongly from just about 40% to over 92% when the solution temperature was raised from 293 to 303 K. The process was however, almost unresponsive to pH changes drop- ping by a margin of - ions does not affect F adsorption onto ATDE. More so apart from the Cl- ions which marginally reduced F adsorption onto ATDE, there was no obvious effect of the SO42- , NO3- and PO43- ions on F uptake by ATDE. Complete F removal (100% adsorption) could be achieved at 400 mg/L initial F concentra- tions using 0.5 g/mL ATDE batch loading ratio at 303 - 313 K and pH = 3.4 ± 0.2. The F adsorption iso- therm was well correlated to the Freundlich and Langmuir models and could be classified as H-Type according to Giles classification of isotherms. The maximum Langmuir F adsorption capacity of ATDE was 51.1 mg/g. It has been demonstrated that a diatomaceous mineral from Kenya could be use as an inexpensive adsorbent for the removal of F ions from aqueous streams.展开更多
文摘The Olkaria geothermal field is located in the Kenya Rift valley, about 120 km from Nairobi. Geothermal activity is widespread in this rift with 14 major geothermal prospects being identified. Structures in the Greater Olkaria volcanic complex include: the ring structure, the Ol’Njorowa gorge, the ENE-WSW Olkaria fault and N-S, NNE-SSW, NW-SE and WNW-ESE trending faults. The faults are more prominent in the East, Northeast and West Olkaria fields but are scarce in the Olkaria Domes area, possibly due to the thick pyroclastics cover. The NW-SE and WNW- ESE faults are thought to be the oldest and are associated with the development of the rift. The most prominent of these faults is the Gorge Farm fault, which bounds the geothermal fields in the northeastern part and extends to the Olkaria Domes area. The most recent structures are the N-S and the NNE-SSW faults. The geochemistry and output of the wells cut by these faults have a distinct characteristic that is the N-S, NW-SE and WNW-ESE faults are characterized by wells that have high Cl contents, temperatures and are good producers whereas the NE-SW faults, the Ring Structure and the Ol’Njorowa gorge appear to carry cool dilute waters with less chloride concentration and thus low performing wells. Though the impacts of these faults are apparent, there exists a gap in knowledge on how wide is the impact of these faults on the chemistry and performance of the wells. This paper therefore seeks to bridge this gap by analysis of the chemical trends of both old wells and newly drilled ones to evaluate the impacts of individual faults and then using buffering technique of ArcGis estimate how far and wide the influence of the faults is. The data was obtained after the sampling and analysis of discharge fluids of wells located on six profiles along the structures cutting through the field. Steam samples were collected with a stainless steel Webre separator connected between the wellhead and an atmospheric silencer on the discharging wells whereas the analysis was done in house in the KenGen geochemistry laboratory. The results indicates that Olkaria field has three categories of faults that control fluid flow that is the NW-SE trending faults that bring in high temperature and Cl rich waters, and the NE-SW trending Olkaria fracture tend to carry cool temperature waters that have led to decline in enthalpies of the wells it cuts through. The faults within the Ol Njorowa gorge act to carry cool, less mineralized water. Though initially, these effects were thought to be in shallow depths, an indication in OW-901 which is a deeper at 2200 m compared to 1600 m of OW-23 well that proves otherwise. This is, however, to be proved later as much deeper wells have been sited.
文摘Acid treated diatomaceous earth (ATDE) from a mining site in Kenya was evaluated for its removal of F from aqueous solutions using adsorption batch experiments. The effect of initial F concentration, adsorbent dosage, contact time, temperature, pH and competing anions was studied. The adsorption process was very fast reaching an initial equilib- rium in just 10 min. Fluoride adsorption onto ATDE increased strongly from just about 40% to over 92% when the solution temperature was raised from 293 to 303 K. The process was however, almost unresponsive to pH changes drop- ping by a margin of - ions does not affect F adsorption onto ATDE. More so apart from the Cl- ions which marginally reduced F adsorption onto ATDE, there was no obvious effect of the SO42- , NO3- and PO43- ions on F uptake by ATDE. Complete F removal (100% adsorption) could be achieved at 400 mg/L initial F concentra- tions using 0.5 g/mL ATDE batch loading ratio at 303 - 313 K and pH = 3.4 ± 0.2. The F adsorption iso- therm was well correlated to the Freundlich and Langmuir models and could be classified as H-Type according to Giles classification of isotherms. The maximum Langmuir F adsorption capacity of ATDE was 51.1 mg/g. It has been demonstrated that a diatomaceous mineral from Kenya could be use as an inexpensive adsorbent for the removal of F ions from aqueous streams.