The 88 kDa glycoprotein known as GP88, Progranulin or PC cell derived growth factor is an autocrine growth factor with a unique cysteine rich motif that is over expressed in breast cancer whereas it is negative in nor...The 88 kDa glycoprotein known as GP88, Progranulin or PC cell derived growth factor is an autocrine growth factor with a unique cysteine rich motif that is over expressed in breast cancer whereas it is negative in normal mammary epithelial cells. It has been shown to play a major role in estrogen independence, tamoxifen resistance and tumorigenesis of breast cancer cells. In the present study, we investigated the effect of GP88 overexpression on the response of the human breast cancer MCF-7 cells to the pure estrogen receptor antagonist fulvestrant (ICI 182,780). While fulvestrant effectively inhibited cell proliferation of empty vector transfected cells, it had no inhibitory effect on the proliferation of GP88 overexpressing breast cancer cells. Mouse xenograft experiments in athymic ovariectomized nude mice showed that GP88 over expressing cells were fulvestrant resistant in vivo in contrast to low GP88 expressing cells. We show that the ability of fulvestrant to induce apoptosis determined by measuring cleavage of poly (ADP-ribose) polymerase was inhibited by GP88. Anti-apoptotic activity of GP88 was associated with sustained expression of bcl-2 and bcl-xL after fulvestrant treatment. In contrast, fulvestrant was still able to inhibit the ability of estrogen to stimulate ERE-luciferase reporter gene activity as well as vEGF expression in GP88 over expressing MCF-7 cells similarly to control MCF-7 cells. Collectively, our data suggest that GP88 prevents apoptosis induced by faslodex and contributes to antiestrogen resistance in human breast cancer.展开更多
文摘The 88 kDa glycoprotein known as GP88, Progranulin or PC cell derived growth factor is an autocrine growth factor with a unique cysteine rich motif that is over expressed in breast cancer whereas it is negative in normal mammary epithelial cells. It has been shown to play a major role in estrogen independence, tamoxifen resistance and tumorigenesis of breast cancer cells. In the present study, we investigated the effect of GP88 overexpression on the response of the human breast cancer MCF-7 cells to the pure estrogen receptor antagonist fulvestrant (ICI 182,780). While fulvestrant effectively inhibited cell proliferation of empty vector transfected cells, it had no inhibitory effect on the proliferation of GP88 overexpressing breast cancer cells. Mouse xenograft experiments in athymic ovariectomized nude mice showed that GP88 over expressing cells were fulvestrant resistant in vivo in contrast to low GP88 expressing cells. We show that the ability of fulvestrant to induce apoptosis determined by measuring cleavage of poly (ADP-ribose) polymerase was inhibited by GP88. Anti-apoptotic activity of GP88 was associated with sustained expression of bcl-2 and bcl-xL after fulvestrant treatment. In contrast, fulvestrant was still able to inhibit the ability of estrogen to stimulate ERE-luciferase reporter gene activity as well as vEGF expression in GP88 over expressing MCF-7 cells similarly to control MCF-7 cells. Collectively, our data suggest that GP88 prevents apoptosis induced by faslodex and contributes to antiestrogen resistance in human breast cancer.