In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 i...In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.展开更多
文摘In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.