期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A conformal titanyl phosphate amorphous overlayer for enhancing photoelectrochemical hydrogen peroxide production
1
作者 Jaekyum Kim Young Eun Kim +8 位作者 Minyeong Je won tae hong Chang-Lyoul Lee tae-Hoon Kim Sung Min Cho Chang Hyuck Choi Heechae Choi Woo-Seok Choe Jung Kyu Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期399-408,I0009,共11页
Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive r... Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive reaction pathways.Here,for highly enhanced PEC H_(2)O_(2)production,we present a conformal amorphous titanyl phosphate(a-TP)overlayer on nanoparticulate TiO_(2)surfaces,achieved via lysozyme-molded in-situ surface reforming.The a-TP overlayer modulates surface adsorption energies for reaction intermediates,favoring WOR for H_(2)O_(2)production over the competing O_(2)evolution reaction.Our density functional theory calculations reveal that a-TP/TiO_(2)exhibits a substantial energy uphill for the O·*formation pathway,which disfavors O_(2)evolution but promotes H_(2)O_(2)production.Additionally,the a-TP overlayer strengthens the built-in electric field,resulting in favorable kinetics.Consequently,a-TP/TiO_(2)exhibits 3.7-fold higher Faraday efficiency(FE)of 63%at 1.76 V vs.reversible hydrogen electrode(RHE)under 1 sun illumination,compared to bare TiO_(2)(17%),representing the highest FE among TiO_(2)-based WOR H_(2)O_(2)production systems.Employing the a-TP overlayer constitutes a promising strategy for controlling reaction pathways and achieving efficient solar-to-chemical energy conversion. 展开更多
关键词 Solar H_(2)O_(2) production In-situ surface reforming Titanyl phosphate Amorphous overlayer Reaction pathway control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部