The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling recept...The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.展开更多
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophistica...The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses.In this review,we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription,mRNA splicing,and DNA damage response.Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis.Finally,the potentials in exploiting chromatin remodeling for management of crop disease are presented.展开更多
基金supported by the National Natural Science Foundation of China(31601599)the Science and Technology Innovation Funding of Fujian Agriculture and Forestry University,China(CXZX2020044A)。
文摘The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.
基金supported by Science and Technology Project of Zhejiang Province(2018C02G2011110)China Postdoctoral Science Foundation(2021 M692849),National Natural Science Foundation of China(31930088)China Agriculture Research System of MOF and MARAC(CARS-3-1-29).
文摘The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses.In this review,we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription,mRNA splicing,and DNA damage response.Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis.Finally,the potentials in exploiting chromatin remodeling for management of crop disease are presented.