期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A voltage-controlled chaotic oscillator based on carbon nanotube field-effect transistor for low-power embedded systems
1
作者 Van Ha Nguyen wonkyeong park +1 位作者 Namtae Kim Hanjung Song 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期617-622,共6页
This paper presents a compact and low-power-based discrete-time chaotic oscillator based on a carbon nanotube field-effect transistor implemented using Wong and Deng's well-known model. The chaotic circuit is compose... This paper presents a compact and low-power-based discrete-time chaotic oscillator based on a carbon nanotube field-effect transistor implemented using Wong and Deng's well-known model. The chaotic circuit is composed of a nonlinear circuit that creates an adjustable chaos map, two sample and hold cells for capture and delay functions, and a voltage shifter that works as a buffer and adjusts the output voltage for feedback. The operation of the chaotic circuit is verified with the SPICE software package, which uses a supply voltage of 0.9 V at a frequency of 20 kHz. The time series, frequency spectra, transitions in phase space, sensitivity with the initial condition diagrams, and bifurcation phenomena are presented. The main advantage of this circuit is that its chaotic signal can be generated while dissipating approximately 7.8 μW of power, making it suitable for embedded systems where many chaos-signal generators are required on a single chip. 展开更多
关键词 chaos generator carbon nanotube field-effect transistor BIFURCATION random noise generator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部