With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the dir...With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block.展开更多
Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superim...Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superimposed. We systematically evaluate the functions of the following three stack methods including linearity,phase weighting and S-transform in the extraction of weak signals under strong background noise and quantitatively estimate the reliability of the stack results. Through the comprehensive discussion of the above three methods of stack results,the preliminary comparative analysis believes that the linear stack signal-to-noise ratio is low,but the waveform distortion is minimal; the phase-weighted superimposed signal-to-noise ratio is high and the phase offset is small,but the results of the waveform quality and linear stack are larger than the deviation; the S-transform stack has a relatively higher signal-to-noise ratio and a small loss of waveform amplitude,but there is a certain phase shift phenomenon. It is therefore suggested that linear stack technology should be used when the requirements of both waveform quality and time precision are high. However,the selection of the stack method when the airgun source excitation is limited should be emphasized. If high fidelity is required, the S-transform stack method should be selected; if the required time is high,accuracy can be selected by phase-weighted stack method to achieve reasonable extraction of weak signals.展开更多
Comprehensive statistical analysis was performed on the basic features of focal mechanisms of 619 ML≥2. 0 earthquakes which occurred in the capital circle area from January 2002 to June 2010. By dividing the capital ...Comprehensive statistical analysis was performed on the basic features of focal mechanisms of 619 ML≥2. 0 earthquakes which occurred in the capital circle area from January 2002 to June 2010. By dividing the capital area into three studying regions based on regional tectonic characteristics,cluster analysis was conducted on the focal mechanisms of all subregions using the longest distance method in the statistical cluster analysis to study the characteristics of tectonic stress tensors. The result shows that dominant P-axis azimuth distribution is NNE-NEE and that of T-axis is NNW-NWW,most of the focal areas are controlled by a horizontal stress field and rupture is mainly of horizontal strike-slip. The maximum principal compression stress orientation is NE75° in the west,NE62° in the middle,and near EW in the east of the capital area. The regional tectonic stress field is characterized by horizontal compression.展开更多
In this paper, we made a systematic study on more than 40 years of observational data of ten temporary fault-crossing measurement sites in the capital circle region of China. We calculated horizontal and vertical comp...In this paper, we made a systematic study on more than 40 years of observational data of ten temporary fault-crossing measurement sites in the capital circle region of China. We calculated horizontal and vertical components of fault slip, and horizontal extension or compression components. Considering the tectonic characteristics of the capital circle region and regional seismicity, we analyzed the present fault activity of the capital circle region and the relationship with earthquakes. The results show the complexity of fault activity in the region: the level of activity of all faults is low, most faults are left-lateral strike-slip faults; there is less vertical activity than horizontal activity and crustal movement is controlled by horizontal movement; fault activity and earthquake activity have a certain relationship, regional fault activity increases before an earthquake, and fault activity has certain abnormal features before strong earthquakes.展开更多
基金sponsored by the National Key Technology R&D Program (2006BAC1B03-03-01),Chinathe Joint Earthquake Science Foundation(A07058),China
文摘With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block.
基金sponsored by the Spark Program of Earthquake Science and Technology,CEA(XH16003)the National Natural Science Foundation(NNSF) of China under Grant No.41474087
文摘Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superimposed. We systematically evaluate the functions of the following three stack methods including linearity,phase weighting and S-transform in the extraction of weak signals under strong background noise and quantitatively estimate the reliability of the stack results. Through the comprehensive discussion of the above three methods of stack results,the preliminary comparative analysis believes that the linear stack signal-to-noise ratio is low,but the waveform distortion is minimal; the phase-weighted superimposed signal-to-noise ratio is high and the phase offset is small,but the results of the waveform quality and linear stack are larger than the deviation; the S-transform stack has a relatively higher signal-to-noise ratio and a small loss of waveform amplitude,but there is a certain phase shift phenomenon. It is therefore suggested that linear stack technology should be used when the requirements of both waveform quality and time precision are high. However,the selection of the stack method when the airgun source excitation is limited should be emphasized. If high fidelity is required, the S-transform stack method should be selected; if the required time is high,accuracy can be selected by phase-weighted stack method to achieve reasonable extraction of weak signals.
基金funded jointly by China Spark Program of Earthquake Science and Technology(XH12001)Special research fund and Task contract of earthquake trend tracing in 2013 of Beijing Earthquake Administration(2013020109)
文摘Comprehensive statistical analysis was performed on the basic features of focal mechanisms of 619 ML≥2. 0 earthquakes which occurred in the capital circle area from January 2002 to June 2010. By dividing the capital area into three studying regions based on regional tectonic characteristics,cluster analysis was conducted on the focal mechanisms of all subregions using the longest distance method in the statistical cluster analysis to study the characteristics of tectonic stress tensors. The result shows that dominant P-axis azimuth distribution is NNE-NEE and that of T-axis is NNW-NWW,most of the focal areas are controlled by a horizontal stress field and rupture is mainly of horizontal strike-slip. The maximum principal compression stress orientation is NE75° in the west,NE62° in the middle,and near EW in the east of the capital area. The regional tectonic stress field is characterized by horizontal compression.
基金sponsored by the Special Foundation of China Earthquake Administration(HBA2)Beijing Nature and Science Foundation(8022009)+1 种基金Spark Program of Earthquake Sciences(XH12001)Youth Seismic Condition Tracking Subject from China Earthquake Administration(2012020201)
文摘In this paper, we made a systematic study on more than 40 years of observational data of ten temporary fault-crossing measurement sites in the capital circle region of China. We calculated horizontal and vertical components of fault slip, and horizontal extension or compression components. Considering the tectonic characteristics of the capital circle region and regional seismicity, we analyzed the present fault activity of the capital circle region and the relationship with earthquakes. The results show the complexity of fault activity in the region: the level of activity of all faults is low, most faults are left-lateral strike-slip faults; there is less vertical activity than horizontal activity and crustal movement is controlled by horizontal movement; fault activity and earthquake activity have a certain relationship, regional fault activity increases before an earthquake, and fault activity has certain abnormal features before strong earthquakes.