GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection...GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR.展开更多
基金This work was supported by U.S. Department of Defense Science Research Fund (Grant No. DAAD 19-03-1-0375) and the National Natural Science Foundation of China (Grant No. 40774055).
文摘GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR.