This paper uses the Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST)model to analyze the impact of typhoon‘Hongxia’on the velocity and position movement of the Kuroshio axis,the impact of typhoons on the Kur...This paper uses the Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST)model to analyze the impact of typhoon‘Hongxia’on the velocity and position movement of the Kuroshio axis,the impact of typhoons on the Kuroshio intrusion into South China Sea(SCS),the corresponding water,heat,and salt fluxes,and the impact of Kuroshio water in the northeastern SCS.When typhoon‘Hongxia’passed,the Kuroshio intrusion into the SCS was the most significant at 21?N latitude.In the vertical direction,the Kuroshio intrusion was strongest in the subsurface layer,leading to the most significant changes in temperature and salinity in the northeastern part of the SCS in the subsurface layer.Under the influence of the southeastern monsoon in summer,a large amount of low-salinity water accumulates at the surface of the northeastern part of the SCS,and Kuroshio intrusive water remains in the bottom and middle portions of the subsurface layer.The westward deviation of the Kuroshio axis caused by the typhoon displays a certain lag compared with the hot and salty water intrusion into the SCS approximately 7 d later.The impact of the typhoon on the Kuroshio intrusion into the SCS lasts for 20 d.The typhoon caused increases in the water,heat,and salt fluxes associated with the Kuroshio intrusion into the SCS,and the contribution of the typhoon to these fluxes was as high as 40%.Under typhoon conditions,the maximum Kuroshio intrusion flux reached more than twice that before the typhoon.展开更多
第二届京沪骨科峰会于2018年7月21日在上海举行。美国梅奥医学中心Stephen Andrew Sems教授应邀作了“股骨和胫骨畸形的矫正”专题报告,深入浅出、言简意赅地将股骨和胫骨畸形的诊断与治疗要点阐述得淋漓尽致,与会者反响很好。现征得Sem...第二届京沪骨科峰会于2018年7月21日在上海举行。美国梅奥医学中心Stephen Andrew Sems教授应邀作了“股骨和胫骨畸形的矫正”专题报告,深入浅出、言简意赅地将股骨和胫骨畸形的诊断与治疗要点阐述得淋漓尽致,与会者反响很好。现征得Sems教授同意,笔者将其演讲内容整理成文,与同道分享。展开更多
Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this ...Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.展开更多
By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport ...By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport with remotely generated swells being included to the ageostrophic transport are analyzed using the ECMWF (European Centre for Medium-Range X,Veather Forecasts) reanalysis data. The ratio of Stokes transport to Ekman transport in north-south (N-S) direction can reach maximum of over 50% in the subtropical region. The preliminary influence of the Stokes transport on the North Pacific gyre is all year persistent, while the effect on the North Atlantic gyre is only obvious in boreal winter and early spring.展开更多
There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF rean...There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data.By comparing the 2000 monthly-mean WT and monthly-mean wind field from QUICKSCAT,large differences are found between the wave transport direction and the wind direction over the Eastern Pacific.This may serve as an evidence for the existence of the SP in this region.The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific(TEP) are in the westerly regions of the Southern and Northern Pacific.展开更多
This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coeff...This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coefficients of wave overtopping are estimated using an empirical prediction formula. A total of 75 tropical cyclones affected Qingdao from 1949 to 2019. These tropical cyclones can be grouped into eight categories according to typhoon tracks. Typhoon wind speed during Track G is projected to decrease, and those of the other seven typhoon progresses will increase by 0.35% – 0.75% in 2025, 0.69% – 1.5% in 2035, and 1.38% – 3.0% in 2055. The significant wave height and wave overtopping outside the bay are greater than those inside the bay. Among the 506 typical points selected, the maximum values of the significant wave height and wave overtopping inside the bay are mainly distributed in the range of 0 – 2 m and 0 – 60 m^3 km^(-1) s^(-1), respectively. The increments of the significant wave height and wave overtopping of Track F are most obvious. The significant wave height of Track F will increase by 50.5% in 2025, 51.8% in 2035, and 53.4% in 2055. In the 2℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055. In the 4℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055.展开更多
The low-frequency variance of the surface wave in the area of the Antarctic Circumpolar Current (ACC) and its correlation with the antarctic circumpolar wave (ACW) are focused on. The analysis of the series of 44 ...The low-frequency variance of the surface wave in the area of the Antarctic Circumpolar Current (ACC) and its correlation with the antarctic circumpolar wave (ACW) are focused on. The analysis of the series of 44 a significant wave height (SWH) interannual anomalies reveals that the SWH anomalies have a strong periodicity of about 4-5 a and this signal propagates eastward obviously from 1985 to 1995, which needs about 8 a to complete a mimacircle around the earth. The method of empirical orthogonal function (EOF) is used to analyze the filtered monthly SWH anomalies to study the spatio-temporal distributions and the propagation characteristics of the low-frequency signals in the wave field. Both the dominant wavenumber- 2 pattern in space and the propagation feature in the south Pacific, the south Atlantic and the south Indian ocean show strong consistency with the ACW. So it is reasonable to conclude that the ACW signal also exists in the wave field. The ACW is important for the climate in the Southern Ocean, so it is worth to pay more attention to the large- scale effect of the surface wave, which may also be important for climate studies.展开更多
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range...The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.展开更多
Based on the data and method offered by Liu et al. (2009), the direct wind and Stokes drift-induced energy inputs into the Ekman layer within the Antarctic Circumpolar Current (ACC) area are reestimated since the ...Based on the data and method offered by Liu et al. (2009), the direct wind and Stokes drift-induced energy inputs into the Ekman layer within the Antarctic Circumpolar Current (ACC) area are reestimated since the results of the former have been proved to be underestimated. And the result shows that the total rate of energy input into the Ekman-Stokes layer within the ACC area is 852.41 GW, including 649.75 GW of direct wind energy input (76%) and 202.66 GW of Stoke drift-induced energy input (24%). Total increased energy input, due to wave-induced Coriolis-Stokes forcing added to the classical Ekman model, is 52.05 GW, accounting for 6.5% of the wind energy input into the classical Ekman layer. The long-term variability of direct wind and Stokes drift-induced energy inputs into the Ekman layer within the ACC is also investigated, and the result shows that the Stokes drift hinders the decadal increasing trend of direct wind energy input. Meanwhile, there is a period of 4-5 a in the energy spectrums, as same as the Antarctic circumpolar wave.展开更多
基金Tianjin Key Laboratory for Oceanic Meteorology for its support via the 2020 Open Fund Project(No.2020TKLOMZD01).
文摘This paper uses the Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST)model to analyze the impact of typhoon‘Hongxia’on the velocity and position movement of the Kuroshio axis,the impact of typhoons on the Kuroshio intrusion into South China Sea(SCS),the corresponding water,heat,and salt fluxes,and the impact of Kuroshio water in the northeastern SCS.When typhoon‘Hongxia’passed,the Kuroshio intrusion into the SCS was the most significant at 21?N latitude.In the vertical direction,the Kuroshio intrusion was strongest in the subsurface layer,leading to the most significant changes in temperature and salinity in the northeastern part of the SCS in the subsurface layer.Under the influence of the southeastern monsoon in summer,a large amount of low-salinity water accumulates at the surface of the northeastern part of the SCS,and Kuroshio intrusive water remains in the bottom and middle portions of the subsurface layer.The westward deviation of the Kuroshio axis caused by the typhoon displays a certain lag compared with the hot and salty water intrusion into the SCS approximately 7 d later.The impact of the typhoon on the Kuroshio intrusion into the SCS lasts for 20 d.The typhoon caused increases in the water,heat,and salt fluxes associated with the Kuroshio intrusion into the SCS,and the contribution of the typhoon to these fluxes was as high as 40%.Under typhoon conditions,the maximum Kuroshio intrusion flux reached more than twice that before the typhoon.
文摘第二届京沪骨科峰会于2018年7月21日在上海举行。美国梅奥医学中心Stephen Andrew Sems教授应邀作了“股骨和胫骨畸形的矫正”专题报告,深入浅出、言简意赅地将股骨和胫骨畸形的诊断与治疗要点阐述得淋漓尽致,与会者反响很好。现征得Sems教授同意,笔者将其演讲内容整理成文,与同道分享。
基金The National High Technology Research and Development Program(863 Program) of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.
基金The National Natural Science Foundation of China under contract Nos 40976005 and 40930844
文摘By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport with remotely generated swells being included to the ageostrophic transport are analyzed using the ECMWF (European Centre for Medium-Range X,Veather Forecasts) reanalysis data. The ratio of Stokes transport to Ekman transport in north-south (N-S) direction can reach maximum of over 50% in the subtropical region. The preliminary influence of the Stokes transport on the North Pacific gyre is all year persistent, while the effect on the North Atlantic gyre is only obvious in boreal winter and early spring.
基金The National Basic Research Programof China under contract Nos 2005CB422302,2005CB422307 and 2007CB411806the Nation-al Natural Science Foundation of China under contract No. 40490263
文摘There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data.By comparing the 2000 monthly-mean WT and monthly-mean wind field from QUICKSCAT,large differences are found between the wave transport direction and the wind direction over the Eastern Pacific.This may serve as an evidence for the existence of the SP in this region.The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific(TEP) are in the westerly regions of the Southern and Northern Pacific.
基金supported by the National Key Research and Development Program of China (No. 2016YFC1401103)the National Natural Science Foundation of China (No. 51779236)+1 种基金the International Cooperation Projects (No. INTASAVE ACCC-045)the Open Fund of Shandong Province Key Laboratory of Ocean Engineering。
文摘This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coefficients of wave overtopping are estimated using an empirical prediction formula. A total of 75 tropical cyclones affected Qingdao from 1949 to 2019. These tropical cyclones can be grouped into eight categories according to typhoon tracks. Typhoon wind speed during Track G is projected to decrease, and those of the other seven typhoon progresses will increase by 0.35% – 0.75% in 2025, 0.69% – 1.5% in 2035, and 1.38% – 3.0% in 2055. The significant wave height and wave overtopping outside the bay are greater than those inside the bay. Among the 506 typical points selected, the maximum values of the significant wave height and wave overtopping inside the bay are mainly distributed in the range of 0 – 2 m and 0 – 60 m^3 km^(-1) s^(-1), respectively. The increments of the significant wave height and wave overtopping of Track F are most obvious. The significant wave height of Track F will increase by 50.5% in 2025, 51.8% in 2035, and 53.4% in 2055. In the 2℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055. In the 4℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055.
基金The National Natural Science Foundation of China under contract Nos 40976005 and 40930844
文摘The low-frequency variance of the surface wave in the area of the Antarctic Circumpolar Current (ACC) and its correlation with the antarctic circumpolar wave (ACW) are focused on. The analysis of the series of 44 a significant wave height (SWH) interannual anomalies reveals that the SWH anomalies have a strong periodicity of about 4-5 a and this signal propagates eastward obviously from 1985 to 1995, which needs about 8 a to complete a mimacircle around the earth. The method of empirical orthogonal function (EOF) is used to analyze the filtered monthly SWH anomalies to study the spatio-temporal distributions and the propagation characteristics of the low-frequency signals in the wave field. Both the dominant wavenumber- 2 pattern in space and the propagation feature in the south Pacific, the south Atlantic and the south Indian ocean show strong consistency with the ACW. So it is reasonable to conclude that the ACW signal also exists in the wave field. The ACW is important for the climate in the Southern Ocean, so it is worth to pay more attention to the large- scale effect of the surface wave, which may also be important for climate studies.
基金funded by the National Science Foundation of China (40976005 and 40930844)
文摘The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.
基金The National Natural Science Foundation of China under contract Nos 40930844 and 40976005
文摘Based on the data and method offered by Liu et al. (2009), the direct wind and Stokes drift-induced energy inputs into the Ekman layer within the Antarctic Circumpolar Current (ACC) area are reestimated since the results of the former have been proved to be underestimated. And the result shows that the total rate of energy input into the Ekman-Stokes layer within the ACC area is 852.41 GW, including 649.75 GW of direct wind energy input (76%) and 202.66 GW of Stoke drift-induced energy input (24%). Total increased energy input, due to wave-induced Coriolis-Stokes forcing added to the classical Ekman model, is 52.05 GW, accounting for 6.5% of the wind energy input into the classical Ekman layer. The long-term variability of direct wind and Stokes drift-induced energy inputs into the Ekman layer within the ACC is also investigated, and the result shows that the Stokes drift hinders the decadal increasing trend of direct wind energy input. Meanwhile, there is a period of 4-5 a in the energy spectrums, as same as the Antarctic circumpolar wave.