As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as ...As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.展开更多
With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed shi...With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.展开更多
The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destr...The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.展开更多
基金Supported by State Key Program Grant of National Natural Science Foundation of China(Grant No.51579198)Key Laboratory of High Performance Ship Technology Opening Foundation(Grant No.2016gxnc04).
文摘As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.
基金financially supported by the National Key R&D Program of China(No.2018YFE0197600)National Natural Science Foundation of China(No.52071244).
文摘With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.
基金supported by the National Key R&D Program of China(No.2018YFE0197600)European Union’s Horizon 2020 Research and Innovation Programme RISE under Grant Agreement No.823759(REMESH)the National Natural Science Foundation of China(No.52071244).
文摘The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.