Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,...Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No.91948303.
文摘Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.