期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of Water Quality Variation and Trend in the Ji'an Section of the Ganjiang River
1
作者 Yingjie XIAO Fengxiang LANG +3 位作者 Peng XU Xiaoyan zou wu zou Yan MAO 《Meteorological and Environmental Research》 CAS 2021年第6期59-67,共9页
Based on the monitoring data of water quality in the Ji'an section of the Ganjiang River from 2008 to 2018 by the Water Resources Monitoring Center of Ji'an City,single factor evaluation method,comprehensive p... Based on the monitoring data of water quality in the Ji'an section of the Ganjiang River from 2008 to 2018 by the Water Resources Monitoring Center of Ji'an City,single factor evaluation method,comprehensive pollution index method and seasonal Kendall test method were adopted to study and analyze the characteristics of surface water resources and the changing trend of water quality in the river section.The results show that the water quality in the Ji'an section of the Ganjiang River was generally good,and the water quality of each function zone reached the target requirement.The comprehensive pollution index was controlled between 0.21 and 0.40 over the years,and there was no significant change in time and space,and the water quality was relatively stable.The dissolved oxygen and permanganate index tended to improve,and there was no change in five-day biochemical oxygen demand,while ammonia nitrogen and total phosphorus showed an upward trend.The water quality as a whole showed a trend of deterioration.By discussing the influencing factors of the characteristic pollutants,the causes of water quality in the Ji'an section of the Ganjiang River were further analyzed.It is suggested to strengthen the supervision and control of non-point source and point source pollution. 展开更多
关键词 Ji'an section of the Ganjiang River Water function zone Ammonia nitrogen Total phosphorus Changing trend
下载PDF
Numerical modeling of all-day albedo variation for bifacial PV systems on rooftops and annual yield prediction in Beijing
2
作者 Xiaoxiao Su Chenglong Luo +4 位作者 Xinzhu Chen Jie Ji Yanshun Yu Yuandan wu wu zou 《Building Simulation》 SCIE EI CSCD 2024年第6期955-964,共10页
Bifacial PV modules capture solar radiation from both sides,enhancing power generation by utilizing reflected sunlight.However,there are difficulties in obtaining ground albedo data due to its dynamic variations.To ad... Bifacial PV modules capture solar radiation from both sides,enhancing power generation by utilizing reflected sunlight.However,there are difficulties in obtaining ground albedo data due to its dynamic variations.To address this issue,this study established an experimental testing system on a rooftop and developed a model to analyze dynamic albedo variations,utilizing specific data from the environment.The results showed that the all-day dynamic variations in ground albedo ranged from 0.15 to 0.22 with an average of 0.16.Furthermore,this study evaluates the annual performance of a bifacial PV system in Beijing by considering the experimental conditions,utilizing bifacial modules with a front-side efficiency of 21.23%and a bifaciality factor of 0.8,and analyzing the dynamic all-day albedo data obtained from the numerical module.The results indicate that the annual radiation on the rear side of bifacial PV modules is 278.90 kWh/m^(2),which accounts for only 15.50%of the front-side radiation.However,when using the commonly default albedo value of 0.2,the rear-side radiation is 333.01 kWh/m^(2),resulting in an overestimation of 19.40%.Under dynamic albedo conditions,the bifacial system is predicted to generate an annual power output of 412.55 kWh/m^(2),representing a significant increase of approximately 12.37%compared to an idealized monofacial PV system with equivalent front-side efficiency.Over a 25-year lifespan,the bifacial PV system is estimated to reduce carbon emissions by 8393.91 kgCO_(2)/m^(2),providing an additional reduction of 924.31 kgCO_(2)/m^(2)compared to the idealized monofacial PV system.These findings offer valuable insights to promote the application of bifacial PV modules. 展开更多
关键词 bifacial PV module ground albedo simulation carbon emission reduction
原文传递
Influence and characteristic of shading on photovoltaic performance of bifacial modules and method for estimating bifacial gain 被引量:1
3
作者 Chenglong Luo Yuandan wu +4 位作者 Xiaoxiao Su wu zou Yanshun Yu Qingyang Jiang Lijie Xu 《Building Simulation》 SCIE EI CSCD 2023年第10期1821-1833,共13页
Bifacial PV modules have unique advantages in low-carbon building applications such as BIPV systems but often suffer from the shading problem resulting from higher surrounding objects or building facades.Point-blank q... Bifacial PV modules have unique advantages in low-carbon building applications such as BIPV systems but often suffer from the shading problem resulting from higher surrounding objects or building facades.Point-blank quantitative studies of PV performance of bifacial modules operating in actual environments as affected by shading on PV cells are lacking due to the difficulties of analysis caused by the existing multiple variable factors.By constructing an experimental comparison system on a flat roof of a building,we experimentally tested and analyzed the comparative variation characteristics of PV performance of bifacial and mono-facial modules under different shading area fractions.The results show that from the viewpoint of photoelectric efficiency,the PV performance of both bifacial and mono-facial PV modules clearly varied with the shading fraction of PV cell in some linear rules,though it is difficult to find regularity from the perspective of output power which was also affected by dynamic solar radiation intensity.An abnormal phenomenon emerged that the photoelectric efficiencies of the bifacial modules with small shading fraction were higher compared to the case without shading.Based on the findings of the experimental results,a regression approximation method based on shading test results(RAST Method)is further proposed to analyze and calculate the bifacial gain of bifacial modules.In the case of the existing roof installation,the mean bifacial gains of the two bifacial modules with different inclination angles were 8.86%and 11.30%,respectively. 展开更多
关键词 solar energy bifacial module SHADING numerical fitting bifacial gain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部