To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean s...To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.展开更多
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704)the Technological Innovation Projects of Ministry of Public Security of China(No.20170001)。
文摘To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.
文摘化石燃料使用的持续消耗,排放大量二氧化碳(CO_(2))导致全球变暖。为了减少碳排放,全球开展大量碳捕集和储存项目。然而长期地质储存存在高成本和不确定性问题。因此,人们越来越倾向于重复利用CO_(2)从而实现碳捕集利用和储存(carbon capture utilization and storage,CCUS),在减少CO_(2)排放的同时带来收益。目前CCUS技术种类繁多,亟须对各类技术的应用情况进行总结。本文回顾各类CCUS技术研究,总结了不同技术的优势和发展制约因素,提出了具有较好应用前景的CCUS技术。未来CCUS技术亟须加强成本和风险管控方面的研究。一些新材料的研制和工艺的创新将会助推该技术的发展,同时配合多尺度监测技术将确保整个项目实施的安全性,切实为缓解全球变暖问题提供有效的解决方案。