The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-fi...The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-filled fluorocarbon coating were evaluated, and compared with those filled by commercial calcium carbonate. All the shell powder-filled coatings can meet the requirements stated in the relevant standards, and with decreasing the particle size of the shell powders, the performance of the thermal insulation coating is enhanced. The coating(SC3) filled by shell powders with an average particle size of 2.81 μm possesses a better thermal insulation performance than the coating(CC) filled by commercial calcium carbonate. The coating SC3 has comparable adhesive force and washing resistance with the coating CC, and in the washing resistance test, after 2000 cycles, the coating SC3 was still able to cover totally their substrates. This work demonstrates a high value-added disposal method for the aquacultural wastes.展开更多
New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion propertie...New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.展开更多
Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sin...Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sintered samples of Ti3AlC2 were studied in this paper.The optimized condition of 1 wt%of arabic gum as dispersant at pH=10 results in a Ti3AlC2 suspension for slip casting Ti3AlC2 green compacts without macro defects or cracks.The sintering temperature and Al4C3 embedding powder are found to dominate the properties of the sintered Ti3AlC2 samples.The Ti3AlC2 sample sintered at 1450℃for 1.5 h with Al4C3 embedding powder reaches the best properties,namely 95.3%relative density,hardness of 4.18 GPa,thermal conductivity of 29.11W·m-1·K-1,and electrical resistivity of 0.39μΩ·m.The findings in this work may pave the way for the application of MAX phases with large size and complex shape.展开更多
The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue...The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue to emerge.In this study,Ti_(2)SnC is found to be capable of extracting Sn out of its alloys(Sn Bi,Sn Ag)by selectively growing Sn whiskers,and the Sn whiskers share the features of the traditional whiskers on platings and solders.Replacing the Ti_(2)SnC substrate with Ti C or Si C,under the same conditions,however,the selective growth of Sn whisker does not happen,which means Ti_(2)SnC plays a critical role in it.Based on the unique crystal structure of Ti_(2)SnC,active Sn atoms diffusing through the basal planes of Ti_(2)SnC is proposed to explain the selectivity.The driving force is suggested to be the high interfacial energy between Ti_(2)SnC and tin.This study is of importance to further understand the growth mechanism of metallic whiskers,and it may be also possible to be harnessed to develop paradigm-shifting technologies of metal purification and metallic whisker/nanowire preparation.展开更多
基金Supported by the National Natural Science Foundation of China(51501038,51731004,51671054)the Fundamental Research Funds for the Central Universities(3212007203)
文摘The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-filled fluorocarbon coating were evaluated, and compared with those filled by commercial calcium carbonate. All the shell powder-filled coatings can meet the requirements stated in the relevant standards, and with decreasing the particle size of the shell powders, the performance of the thermal insulation coating is enhanced. The coating(SC3) filled by shell powders with an average particle size of 2.81 μm possesses a better thermal insulation performance than the coating(CC) filled by commercial calcium carbonate. The coating SC3 has comparable adhesive force and washing resistance with the coating CC, and in the washing resistance test, after 2000 cycles, the coating SC3 was still able to cover totally their substrates. This work demonstrates a high value-added disposal method for the aquacultural wastes.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51731004, 51671054, and 51501038)the Fundamental Research Funds for the Central Universities in China (Grant Nos. 2242018K40108 and 2242018K40109) were highly appreciated
文摘New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.
基金financially supported by National Natural Science Foundation of China (51731004, 51671054, 51501038)Natural Science Foundation of Jiangsu Province (BK20181285)“the Fundamental Research Funds for the Central Universities” in China (2242018K40108, 2242018K40109)
文摘Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sintered samples of Ti3AlC2 were studied in this paper.The optimized condition of 1 wt%of arabic gum as dispersant at pH=10 results in a Ti3AlC2 suspension for slip casting Ti3AlC2 green compacts without macro defects or cracks.The sintering temperature and Al4C3 embedding powder are found to dominate the properties of the sintered Ti3AlC2 samples.The Ti3AlC2 sample sintered at 1450℃for 1.5 h with Al4C3 embedding powder reaches the best properties,namely 95.3%relative density,hardness of 4.18 GPa,thermal conductivity of 29.11W·m-1·K-1,and electrical resistivity of 0.39μΩ·m.The findings in this work may pave the way for the application of MAX phases with large size and complex shape.
基金the National Natural Science Foundation of China(No.51731004)the National Key R&D Program of China(No.2017YFE0301403)the Zhishan Youth Scholar Program of Southeast University。
文摘The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue to emerge.In this study,Ti_(2)SnC is found to be capable of extracting Sn out of its alloys(Sn Bi,Sn Ag)by selectively growing Sn whiskers,and the Sn whiskers share the features of the traditional whiskers on platings and solders.Replacing the Ti_(2)SnC substrate with Ti C or Si C,under the same conditions,however,the selective growth of Sn whisker does not happen,which means Ti_(2)SnC plays a critical role in it.Based on the unique crystal structure of Ti_(2)SnC,active Sn atoms diffusing through the basal planes of Ti_(2)SnC is proposed to explain the selectivity.The driving force is suggested to be the high interfacial energy between Ti_(2)SnC and tin.This study is of importance to further understand the growth mechanism of metallic whiskers,and it may be also possible to be harnessed to develop paradigm-shifting technologies of metal purification and metallic whisker/nanowire preparation.