期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于时间序列关系的GBRT交通事故预测模型 被引量:9
1
作者 杨文忠 张志豪 +4 位作者 吾守尔·斯拉木 温杰彬 富雅玲 王丽花 王婷 《电子科技大学学报》 EI CAS CSCD 北大核心 2020年第4期615-621,共7页
道路交通事故是道路交通安全水平的具体表现。在当前交通事故预测工作中,存在对数据中时间序列关系的挖掘不充分、预测的周期宏观、交通事故相关的影响因素考虑不全等问题。该文提出一种基于时间序列关系的梯度提升回归树(GBRT)交通事... 道路交通事故是道路交通安全水平的具体表现。在当前交通事故预测工作中,存在对数据中时间序列关系的挖掘不充分、预测的周期宏观、交通事故相关的影响因素考虑不全等问题。该文提出一种基于时间序列关系的梯度提升回归树(GBRT)交通事故模型。该模型对英国Leicester的2005-2015年每天的交通事故数、死亡人数、涉事的车辆数进行预测。实验结果显示,引入时间序列关系有助于提升模型预测精度。预测结果为交通管理部门的决策起到参考作用,建模方式为同类型预测问题的建模工作带来了积极的参考意义。 展开更多
关键词 梯度提升回归树 预测 时间序列 交通事故
下载PDF
维吾尔语方言识别及相关声学分析 被引量:3
2
作者 孙杰 吾守尔·斯拉木 +1 位作者 热依曼·吐尔逊 张晶晶 《声学学报》 EI CSCD 北大核心 2019年第6期1083-1092,共10页
根据语音识别和声纹识别等语音应用研究的实际需要,首次对和田方言的声学特性和识别进行研究。首先选取和田方言语音进行人工多层级标注,对元音的共振峰、时长和音强进行统计分析,描绘出和田方言主体格局及男性和女性的发音特点。然后... 根据语音识别和声纹识别等语音应用研究的实际需要,首次对和田方言的声学特性和识别进行研究。首先选取和田方言语音进行人工多层级标注,对元音的共振峰、时长和音强进行统计分析,描绘出和田方言主体格局及男性和女性的发音特点。然后运用方差分析和非参数分析法对维吾尔语3种方言的共振峰样本进行检验,结果表明3种方言的男性元音、女性元音及整体元音的共振峰分布模式存在显著差异。最后,分别构建基于GMM-UBM(Gaussian Mixture Model-Universal Background Model)、DNN-UBM(Deep Neural Networks-Universal Background Model)和LSTM-UBM(Long Short Term MemoryUniversal Background Model)维吾尔语方言识别模型,对基于梅尔频率倒谱系数及其与共振峰频率组合做输入特征提取的方言i-vector区分性进行对比实验。实验结果表明融入共振峰系数的组合特征可以增加方言的辨识度,且LSTM-UBM模型较GMM-UBM和DNN-UBM能提取到更具区分性的方言i-vector。 展开更多
关键词 和田方言 维吾尔语 共振峰频率 声学分析 区分性 发音特点 声纹识别 语音识别
下载PDF
基于多特征和深度神经网络的维吾尔文情感分类 被引量:2
3
作者 买买提阿依甫 吾守尔·斯拉木 +2 位作者 艾斯卡尔·艾木都拉 杨文忠 帕丽旦·木合塔尔 《计算机应用研究》 CSCD 北大核心 2020年第5期1368-1374,1379,共8页
针对传统机器学习的情感分类方法存在长距离依赖问题与深度学习存在忽略情感词库的弊端,提出了一种基于注意力机制与双向长短记忆网络和卷积神经网络模型相结合的维吾尔文情感分类方法。将多特征拼接向量作为双向长短记忆网络的输入来... 针对传统机器学习的情感分类方法存在长距离依赖问题与深度学习存在忽略情感词库的弊端,提出了一种基于注意力机制与双向长短记忆网络和卷积神经网络模型相结合的维吾尔文情感分类方法。将多特征拼接向量作为双向长短记忆网络的输入来捕获文本上下文信息,使用注意力机制和卷积网络获取文本隐藏情感特征信息,有效增强了对文本情感语义的捕获能力。实验结果表明,该方法在二分类和五分类情感数据集上的F1值相比于机器学习方法分别提高了5.59%和7.73%。 展开更多
关键词 情感分类 双向长短记忆网络 卷积神经网络 注意力机制 维吾尔语
下载PDF
MVCE-Net: Multi-View Region Feature and Caption Enhancement Co-Attention Network for Visual Question Answering
4
作者 Feng Yan wushouer silamu Yanbing Li 《Computers, Materials & Continua》 SCIE EI 2023年第7期65-80,共16页
Visual question answering(VQA)requires a deep understanding of images and their corresponding textual questions to answer questions about images more accurately.However,existing models tend to ignore the implicit know... Visual question answering(VQA)requires a deep understanding of images and their corresponding textual questions to answer questions about images more accurately.However,existing models tend to ignore the implicit knowledge in the images and focus only on the visual information in the images,which limits the understanding depth of the image content.The images contain more than just visual objects,some images contain textual information about the scene,and slightly more complex images contain relationships between individual visual objects.Firstly,this paper proposes a model using image description for feature enhancement.This model encodes images and their descriptions separately based on the question-guided coattention mechanism.This mechanism increases the feature representation of the model,enhancing the model’s ability for reasoning.In addition,this paper improves the bottom-up attention model by obtaining two image region features.After obtaining the two visual features and the spatial position information corresponding to each feature,concatenating the two features as the final image feature can better represent an image.Finally,the obtained spatial position information is processed to enable the model to perceive the size and relative position of each object in the image.Our best single model delivers a 74.16%overall accuracy on the VQA 2.0 dataset,our model even outperforms some multi-modal pre-training models with fewer images and a shorter time. 展开更多
关键词 Bottom-up attention spatial position relationship region feature self-attention
下载PDF
Acoustic analysis of the vowel system in Hotan dialect and its contribution to dialect recognition of Uyghur dialects
5
作者 SUN Jie wushouer silamu +1 位作者 REYIMAN Turson ZHANG Jingjing 《Chinese Journal of Acoustics》 CSCD 2020年第1期117-132,共16页
Based on the actual needs of speech application research such as speech recognition and voiceprint recognition,the acoustic characteristics and recognition of Hotan dialect were studied for the first time.Firstly,the ... Based on the actual needs of speech application research such as speech recognition and voiceprint recognition,the acoustic characteristics and recognition of Hotan dialect were studied for the first time.Firstly,the Hetian dialect voice was selected for artificial multi-level annotation,and the formant,duration and intensity of the vowel were analyzed to describe statistically the main pattern of Hetian dialect and the pronunciation characteristics of male and female.Then using the analysis of variance and nonparametric analysis to test the formant samples of the three dialects of Uygur language,the results show that there are significant differences in the formant distribution patterns of male vowels,female vowels and whole vowels in the three dialects.Finally,the GUM-UBM(Gaussian Mixture Model-Universal Background Model),DNN-UBM(Deep Neural Networks-Universal Background Model)and LSTM-UBM(Long Short Term Memory Network-Universal Background Model)Uyghur dialect recognition models are constructed respectively.Based on the Mel-frequency cepstrum coefficient and its combination with the formant frequency for the input feature extraction,the contrastive experiment of dialect i-vector distinctiveness is carried out.The experimental results show that the combined features of the formant coefficients can increase the recognition of the dialect,and the LSTM-UBM model can extract more discriminative dialects than the GMM-UBM and DNN-UBM. 展开更多
关键词 analysis SUCH Model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部