期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity 被引量:7
1
作者 Y.Wu H.Wang +4 位作者 X.J.Liu X.H.Chen x.d.hui Y.Zhang Z.P.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第6期566-575,共10页
To address the main stumbling-block of bulk metallic glasses (BMGs), i.e., room temperature brittleness, designing BMG matrix composites has been attracted extensive attention. Up to date, BMG composites in various ... To address the main stumbling-block of bulk metallic glasses (BMGs), i.e., room temperature brittleness, designing BMG matrix composites has been attracted extensive attention. Up to date, BMG composites in various alloy systems have been successfully developed by forming crystalline phases embedded in the amorphous matrix through either ex-situ or in-situ methods. In this paper, a brief review of our recent work in this topic will be presented and the novel approaches to improving composite formability and mechanical properties will also be highlighted. The main purpose of this manuscript is not to offer a comprehensive review of all the BMG composites, but instead focuses will be placed on illustrating recently developed advanced BMG composites including Fe-based BMG composite with no metalloids, AI-based BMG composite and BMG composites reinforced by the TRIP (transformation-induced plasticity) effects. The basic ideas and related mechanisms underlying the development of these novel BMG composites will be discussed. 展开更多
关键词 Bulk metallic glasses DESIGNING FORMABILITY PLASTICITY
原文传递
Ultrasonic excitation induced nanocrystallization and toughening of Zr46.75Cu46.75Al6.5 bulk metallic glass 被引量:3
2
作者 W.Zhai L.H.Nie +3 位作者 x.d.hui Y.Xiao T.Wang B.Wei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期157-161,共5页
Intensive power ultrasound is introduced to Zr46.75Cu46.75Al6.5bulk metallic glass(BMG)as an easy-procurable,non-destructive physical method to modulate its atomic rearrangement and shear deformation behavior.The micr... Intensive power ultrasound is introduced to Zr46.75Cu46.75Al6.5bulk metallic glass(BMG)as an easy-procurable,non-destructive physical method to modulate its atomic rearrangement and shear deformation behavior.The microstructure after ultrasonic excitation with amplitude about 15μm in 20 k Hz for 2 h is characterized by large amount of Cu10Zr7 nanocrystals with size of 20–50 nm embedded in the glass matrix.This leads to a sharp increase in the critical stress for the first pop-in event of shear banding,and thus simultaneously improves both compressive plasticity and yield strength.Our findings provide a novel approach for overcoming the strength-ductility trade-off dilemma. 展开更多
关键词 Bulk metallic glass NANOCRYSTALLIZATION PLASTICITY TOUGHNESS Ultrasound
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部