A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiord...A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.展开更多
基金supported by National Natural Science Foundation of China under Grants 61290312, 61107072, 61107073, and 61475032supported by Program for Changjiang Scholars and Innovative Research Team in Universities of China (PCSIRT)the “111 Project” of China Education Ministry
文摘A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.