The process of high energy electron acceleration along the surface of grating targets(GTs)that were irradiated by a relativistic,high-contrast laser pulse at an intensity I=2.5×10^20 W/cm^2 was studied.Our experi...The process of high energy electron acceleration along the surface of grating targets(GTs)that were irradiated by a relativistic,high-contrast laser pulse at an intensity I=2.5×10^20 W/cm^2 was studied.Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength,the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model.An electron beam with a peak charge of∼2.7 nC/sr,for electrons with energies>1.5 MeV,was measured.Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length.A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process.The predictions closely match the experimental and computational results.展开更多
基金Computational support and infrastructure were provided by the Centre for Information and Media Technology(ZIM)of the University of Dusseldorf(Germany).
文摘The process of high energy electron acceleration along the surface of grating targets(GTs)that were irradiated by a relativistic,high-contrast laser pulse at an intensity I=2.5×10^20 W/cm^2 was studied.Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength,the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model.An electron beam with a peak charge of∼2.7 nC/sr,for electrons with energies>1.5 MeV,was measured.Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length.A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process.The predictions closely match the experimental and computational results.