P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/Cip1 involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence...P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/Cip1 involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21Waf1/Cip1 and cellular senescence. While in murine cells, the role of p21Waf1/Cip1 is indefinite. We explored this issue using NIH3T3 cells with inducible p21Waf1/Cip1 expression. Induction of p21Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21Waf1/Cip1-transduced NIH3T3 cells expressed β-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p21Waf1/Cip1 can also induce senescence-like changes in murine cells.展开更多
文摘P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/Cip1 involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21Waf1/Cip1 and cellular senescence. While in murine cells, the role of p21Waf1/Cip1 is indefinite. We explored this issue using NIH3T3 cells with inducible p21Waf1/Cip1 expression. Induction of p21Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21Waf1/Cip1-transduced NIH3T3 cells expressed β-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p21Waf1/Cip1 can also induce senescence-like changes in murine cells.