Cognitive radio has been recently proposed as a promising technology to improve the spectrum utilization. In this paper, we consider a system where a licensed radio spectrum is shared by a primary network and a second...Cognitive radio has been recently proposed as a promising technology to improve the spectrum utilization. In this paper, we consider a system where a licensed radio spectrum is shared by a primary network and a secondary network. Based on the subspace theory, a novel low-complexity algorithm for secondary user selection has been proposed. On the basis of the scheduling scheme, we jointly consider transmit beamforming, scheduling and power allocation, and subsequently present a complete set of solution for secondary network downlink. Simulation results has shown that our proposed scheme not only can limit the introduced interference at primary users within the tolerable range, but also can achieve high sum-rate throughput of secondary network, simultaneously. Furthermore, as is proved by simulation results, our scheme is very robust due to the fact that only a little tolerable performance drop is introduced when simple but nonoptimal equal power allocation is adopted.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60872049, 60871042)the National High-Tech Research & Devel-opment Program of China (Grant No. 2007AA10Z235)the Teaching and Research Finances for the Returned Overseas Chinese Scholars
文摘Cognitive radio has been recently proposed as a promising technology to improve the spectrum utilization. In this paper, we consider a system where a licensed radio spectrum is shared by a primary network and a secondary network. Based on the subspace theory, a novel low-complexity algorithm for secondary user selection has been proposed. On the basis of the scheduling scheme, we jointly consider transmit beamforming, scheduling and power allocation, and subsequently present a complete set of solution for secondary network downlink. Simulation results has shown that our proposed scheme not only can limit the introduced interference at primary users within the tolerable range, but also can achieve high sum-rate throughput of secondary network, simultaneously. Furthermore, as is proved by simulation results, our scheme is very robust due to the fact that only a little tolerable performance drop is introduced when simple but nonoptimal equal power allocation is adopted.