本文在海-气-浪-沉积输运耦合模式COAWST(The Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System)中,添加包含海洋飞沫效应的拖曳系数CD和热焓交换系数CK参数化方案,探讨海洋飞沫的动力学和热力学效应对热带气旋的影...本文在海-气-浪-沉积输运耦合模式COAWST(The Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System)中,添加包含海洋飞沫效应的拖曳系数CD和热焓交换系数CK参数化方案,探讨海洋飞沫的动力学和热力学效应对热带气旋的影响。数值实验结果表明,海洋飞沫效应可有效改进热带气旋的路径模拟结果;只考虑海洋飞沫动力学效应时,对海表动量通量的影响甚少,可使向上感热通量和潜热通量略有增加;同时考虑海洋飞沫动力学和热力学效应时,可使海表动量通量略有增加,并使向上感热通量和潜热通量显著增加,海洋飞沫主要通过热力学效应有效增加热带气旋强度,对热带气旋强度模拟的改进效果相比于仅考虑海洋飞沫动力学效应更显著。展开更多
The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variatio...The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Nino/La Nina were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm^-2 in September.展开更多
文摘本文在海-气-浪-沉积输运耦合模式COAWST(The Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System)中,添加包含海洋飞沫效应的拖曳系数CD和热焓交换系数CK参数化方案,探讨海洋飞沫的动力学和热力学效应对热带气旋的影响。数值实验结果表明,海洋飞沫效应可有效改进热带气旋的路径模拟结果;只考虑海洋飞沫动力学效应时,对海表动量通量的影响甚少,可使向上感热通量和潜热通量略有增加;同时考虑海洋飞沫动力学和热力学效应时,可使海表动量通量略有增加,并使向上感热通量和潜热通量显著增加,海洋飞沫主要通过热力学效应有效增加热带气旋强度,对热带气旋强度模拟的改进效果相比于仅考虑海洋飞沫动力学效应更显著。
基金supported by the National Key Research and Development Program of China (No.2016YFC1402 000)the National Natural Science Foundation of China (Nos.51509226, 51779236)。
文摘The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Nino/La Nina were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm^-2 in September.