期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Theoretical Analysis and Experimental Verification on Flow Field of Piezoelectric Pump with Unsymmetrical Slopes Element 被引量:18
1
作者 xia qixiao ZHANG Jianhui +1 位作者 LEI Hong CHENG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期735-744,共10页
Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its min... Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%. 展开更多
关键词 PIEZOELECTRIC Valveless PUMP Flow field Unsymmetrical slopes element
下载PDF
Principle and Experimental Verification of Caudal-fin-type Piezoelectric-stack Pump with Variable-cross-section Oscillating Vibrator 被引量:12
2
作者 HU xiaoqi ZHANG Jianhui +3 位作者 HUANG Yi xia qixiao HUANG Weiqing ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期128-136,共9页
In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overco... In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overcome these drawbacks, utilizing the bending vibration of piezoelectric bimorph to drive fluid was conducted. However, our investigation on the current status of this piezoelectric bimorph pump shows that larger driving force and vibration amplitude are required for fluid pumping; the pumping can be realized through the centrifugal force; and the mechanism of fluid pumping is no longer further studied. Based on these cases, the paper designed a piezoelectric-stack pump with variable-cross-section oscillating (VCSO) vibrator by imitating the swing of the caudal-fin of tuna, and the pump is neither the rotating type nor the volumetric type according to the taxonomy. The interaction between the oscillating vibrator and the fluid parcel is firstly analyzed from the viewpoint of momentum conservation, and the analytical expression of pump flow rate is obtained. Then the modal and harmonic response analyses on the vibrator immerged in water are carried out. From the analyses the first two orders resonance frequencies are 832 Hz and 1 939 Hz, respectively, and the peak value of the tip amplitude is 0.6 mm. Laser Doppler vibrometer is used to measure both the frequency and vibration amplitude, and the determined first two orders resonance frequencies are 617 Hz and 1 356 Hz, respectively. The measured tip amplitude reaches to the peak value of 0.3 mm. At last, experimental measurement for the flow rates with different driving frequencies is conducted. The results show that the flow rate can reach 560 mL/min at 1 370 Hz when the pump runs under the backpressure of 30 mm water column. And the flow rate is as much as 560% of that of experiment results carried out by researchers from Brazil. The proposed pump innovates in both theory and taxonomy; in addition, the pump overcomes the drawbacks such as large flow fluctuation and low flow rate in the traditional FRD type pumps, which will help to broaden the application of the valve-less piezoelectric pump. 展开更多
关键词 caudal-fin-type variable-cross-section piezoelectric-stack valve-less pump
下载PDF
Theoretical Analysis and Experimental Verification on Valve-less Piezoelectric Pump with Hemisphere-segment Bluff-body 被引量:9
3
作者 JI Jing ZHANG Jianhui +3 位作者 xia qixiao WANG Shouyin HUANG Jun ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期595-605,共11页
Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump ch... Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H20 at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment. 展开更多
关键词 valve-less piezoelectric pump hemisphere-segment bluff-body flow resistance
下载PDF
Analysis on Flow Field of the Valveless Piezoelectric Pump with Two Inlets and One Outlet and a Rotating Unsymmetrical Slopes Element 被引量:13
4
作者 xia qixiao ZHANG Jianhui +1 位作者 LEI Hong CHENG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期474-483,共10页
Typically,liquid pump and liquids mixer are two separate devices.The invention of piezoelectric pump makes it possible to integrate the two devices.Hower,the existing piezoelectric mixing-pumps are larger because the ... Typically,liquid pump and liquids mixer are two separate devices.The invention of piezoelectric pump makes it possible to integrate the two devices.Hower,the existing piezoelectric mixing-pumps are larger because the need the space outside the chamber,and another shortcome of them is that they cannot adjust the mixing ratio of two liquids.In this paper,a new piezoelectric pump being capable of integrating mixer and pump is presented,based on the theory of the piezoelectric pump with the unsymmetrical slopes element(USE).Besides the features of two inlets and one outlet,the piezoelectric pump has a rotatable unsymmetrical slopes element(RUSE).When the pump works,two fluids flow into the inlet channels respectively.Then the RUSE controls the ratio of the two flows by adjusting the flow resistances of the two inlet channels.The fluids form a net flow due to the USE principle,while they are mixed into a homogeneous solution due to strong turbulence flow field and complex vortices generated by RUSE in the chamber.And then the solution flows through the outlet.Firstly,the theoretical analysis on this pump is performed.Meanwhile,the flow field in the chamber is calculated and simulated.And then,the relationship between the flows of the two channels and the rotating angle of the RUSE is set up and analyzed.Finally,experiment with the proposed pump is carried out to verify the numerical results.A RUSE with 20° slope angle is used in the experiment.Four sets of data are tested with the RUSE at the rotating angles of 0°,6°,11°,and 16°,respectively,corresponding to the numerical models.The experimental results show that the empirical data and the theoretical data share the same trend.The maximum error between the theoretical flow and the experimental flow is 11.14%,and the maximum error between the theoretical flow ratio of the two inlets and the experimental one is 2.5%.The experiment verified the theoretical analysis.The proposed research provides a new idea for integration of micro liquids mixer and micro liquids pump. 展开更多
关键词 piezoelectric pump valveless rotatable unsymmetrical slopes element
下载PDF
“机器学习”课程思政教学改革与探究 被引量:8
5
作者 商新娜 宏晨 +1 位作者 田娥 夏齐霄 《科教文汇》 2021年第28期95-97,共3页
课程思政是高等教育的理念创新、制度创新和实践创新,"机器学习"课程是人工智能时代新工科的核心课程之一,时代性和应用性强,课程思政从科技强国战略、科技应用方向和敬业精神方面开展,全方位将思政元素润物无声地融入教学,... 课程思政是高等教育的理念创新、制度创新和实践创新,"机器学习"课程是人工智能时代新工科的核心课程之一,时代性和应用性强,课程思政从科技强国战略、科技应用方向和敬业精神方面开展,全方位将思政元素润物无声地融入教学,让课程成为育人的主渠道,发挥同向协同作用。 展开更多
关键词 课程思政 机器学习 同向协同
下载PDF
Simulation of tree and its swaying with wind generated by L-system 被引量:1
6
作者 Liu Ziping xia qixiao Yu Yue 《Computer Aided Drafting,Design and Manufacturing》 2017年第1期15-21,共7页
This paper constructs a tree model by using the 3D stochastic and L system with brackets. Adjusting the range of the parameters, the present method ensures a favorable randomness and reflects the reality and the real ... This paper constructs a tree model by using the 3D stochastic and L system with brackets. Adjusting the range of the parameters, the present method ensures a favorable randomness and reflects the reality and the real time. Based on a simple mechanical model, the simulation of the phenomenon of wind swaying trees satisfies visual effects well. 展开更多
关键词 SIMULATION tree flapping L-SYSTEM fractal geometry
下载PDF
Theory and experimental verification of valveless piezoelectric pump with rotatable unsymmetrical slopes 被引量:8
7
作者 ZHANG JianHui xia qixiao +3 位作者 HUANG Yi LENG XueFei HUANG Jun ZHAO ChunSheng 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期3070-3077,共8页
A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transpo... A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transporting them.In this paper,firstly,the design of the valveless piezoelectric pump with rotatable unsymmetrical slopes was proposed,and the single-direction flow principle was explained.Then,the fluid mechanics model of the valveless piezoelectric pump with rotatable unsymmetrical slopes was established.Meanwhile,the numerical simulation of the pump was performed.Finally,the experiments on relationship between the rotation angles of the slope and the flow rates were conducted.The experimental results showed that the maximum flow was 32.32 mL min 1.The maximum relative error between the theoretical results and the experimental ones was 14.59%.For the relationship between rotation angles and flow ratio of two inlets,the relative error between the experimental and theoretical maxima was 3.75%.Thus,the experiments proved the feasibility of the pump design and verified the theory. 展开更多
关键词 无阀压电泵 旋转角度 不对称 实验 验证 流体力学模型 最大相对误差 研究开发
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部