We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twi...We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twin-satellite mission. We find a total mass loss trend of the HMA glaciers at a rateof –22.17 (±1.96) Gt/a. The largest mass loss rates of –7.02 (±0.94) and –6.73 (±0.78) Gt/a are found forthe glaciers in Nyainqentanglha Mountains and Eastern Himalayas, respectively. Although most glaciers inthe HMA area show a mass loss, we find a small glacier mass gain of 1.19 (±0.55) and 0.77 (±0.37) Gt/a inKarakoram Mountains and Western Kunlun Mountains, respectively. There is also a nearly zero massbalance in Pamirs. Our estimates of glacier mass change trends confirm previous results from the analysisof altimetry data of the ICESat (ICE, Cloud and Land Elevation Satellite) and ASTER (AdvancedSpaceborne Thermal Emission and Reflection Radiometer) DEM (Digital Elevation Model) satellites inmost of the selected glacier areas. However, they largely differ to previous GRACE-based studies which weattribute to our different post-processing techniques of the newer GRACE data. In addition, we explicitlyshow regional mass change features for both the interannual glacier mass changes and the 14-a averagedseasonal glacier mass changes. These changes can be explained in parts by total net precipitation (netsnowfall and net rainfall) and net snowfall, but mostly by total net radiation energy when compared to datafrom the ERA5-Land meteorological reanalysis. Moreover, nearly all the non-trend interannual masschanges and most seasonal mass changes can be explained by the total net radiation energy data. The massloss trends could be partly related to a heat effect due to increased net rainfall in Tianshan Mountains, QilianMountains, Nyainqentanglha Mountains and Eastern Himalayas. Our new results for the glacier mass changein this study could help improve the understanding of glacier variation in the HMA area and contribute tothe study of global change. They could also serve the utilization of water resources there and in neighboringareas.展开更多
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
We use the average crustal structure of the CRUST1.0 model for the Tibetan Plateau to establish a realistic earth model termed as TC1 P, and data from the Global Land Data Assimilation System(GLDAS) hydrology model an...We use the average crustal structure of the CRUST1.0 model for the Tibetan Plateau to establish a realistic earth model termed as TC1 P, and data from the Global Land Data Assimilation System(GLDAS) hydrology model and Gravity Recovery and Climate Experiment(GRACE) data, to generate the hydrology signals assumed in this study. Modeling of surface radial displacements and gravity variation is performed using both TC1 P and the global Preliminary Reference Earth Model(PREM). Furthermore, inversions of the hydrology signals based on simulated Global Positioning System(GPS) and GRACE data are performed using PREM. Results show that crust in TC1 P is harder and softer than that in PREM above and below a depth of 15 km, respectively, causing larger differences in the computed load Love numbers and loading Green’s functions. When annual hydrology signals are assumed,the differences of the radial displacements are found to be as large as approximately0.6 mm for the truncated degree of 180; while for hydrology-trend signals the differences are very small. When annual hydrology signals and the trends are assumed, the differences in the surface gravity variation are very small. It is considered that TC1 P can be used to efficiently remove the hydrological effects on the monitoring of crustal movement. It was also found that when PREM is used inappropriately, the inversion of the hydrology signals from simulated annual GPS signals can only recover approximately 88.0% of the annual hydrology signals for the truncated degree of 180, and the inversion of hydrology signals from the simulated trend GPS signals can recover approximately 92.5% for the truncated degree of 90. However, when using the simulated GRACE data, it is possible to recover almost 100%. Therefore, in future, the TC1 P model can be used in the inversions ofhydrology signals based on GPS network data. PREM is also valid for use with inversions of hydrology signals from GRACE data at resolutions of approximately 220 km and larger.展开更多
基金This work is funded by the National Key R&D Program of China(2017YFA0603103)the National Natural Science Foundation of China(41974009,42004007)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDB-SSW-DQC027,QYZDJ-SSW-DQC042)the open fund of State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2021-2-6)。
文摘We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twin-satellite mission. We find a total mass loss trend of the HMA glaciers at a rateof –22.17 (±1.96) Gt/a. The largest mass loss rates of –7.02 (±0.94) and –6.73 (±0.78) Gt/a are found forthe glaciers in Nyainqentanglha Mountains and Eastern Himalayas, respectively. Although most glaciers inthe HMA area show a mass loss, we find a small glacier mass gain of 1.19 (±0.55) and 0.77 (±0.37) Gt/a inKarakoram Mountains and Western Kunlun Mountains, respectively. There is also a nearly zero massbalance in Pamirs. Our estimates of glacier mass change trends confirm previous results from the analysisof altimetry data of the ICESat (ICE, Cloud and Land Elevation Satellite) and ASTER (AdvancedSpaceborne Thermal Emission and Reflection Radiometer) DEM (Digital Elevation Model) satellites inmost of the selected glacier areas. However, they largely differ to previous GRACE-based studies which weattribute to our different post-processing techniques of the newer GRACE data. In addition, we explicitlyshow regional mass change features for both the interannual glacier mass changes and the 14-a averagedseasonal glacier mass changes. These changes can be explained in parts by total net precipitation (netsnowfall and net rainfall) and net snowfall, but mostly by total net radiation energy when compared to datafrom the ERA5-Land meteorological reanalysis. Moreover, nearly all the non-trend interannual masschanges and most seasonal mass changes can be explained by the total net radiation energy data. The massloss trends could be partly related to a heat effect due to increased net rainfall in Tianshan Mountains, QilianMountains, Nyainqentanglha Mountains and Eastern Himalayas. Our new results for the glacier mass changein this study could help improve the understanding of glacier variation in the HMA area and contribute tothe study of global change. They could also serve the utilization of water resources there and in neighboringareas.
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.
基金supported by the National Natural Science Foundation of China (41431070, 41174016, 41274026, 41004008)the National Key Basic Research Program of China (973 Program, 2012CB957703)the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EWTZ-05)
文摘We use the average crustal structure of the CRUST1.0 model for the Tibetan Plateau to establish a realistic earth model termed as TC1 P, and data from the Global Land Data Assimilation System(GLDAS) hydrology model and Gravity Recovery and Climate Experiment(GRACE) data, to generate the hydrology signals assumed in this study. Modeling of surface radial displacements and gravity variation is performed using both TC1 P and the global Preliminary Reference Earth Model(PREM). Furthermore, inversions of the hydrology signals based on simulated Global Positioning System(GPS) and GRACE data are performed using PREM. Results show that crust in TC1 P is harder and softer than that in PREM above and below a depth of 15 km, respectively, causing larger differences in the computed load Love numbers and loading Green’s functions. When annual hydrology signals are assumed,the differences of the radial displacements are found to be as large as approximately0.6 mm for the truncated degree of 180; while for hydrology-trend signals the differences are very small. When annual hydrology signals and the trends are assumed, the differences in the surface gravity variation are very small. It is considered that TC1 P can be used to efficiently remove the hydrological effects on the monitoring of crustal movement. It was also found that when PREM is used inappropriately, the inversion of the hydrology signals from simulated annual GPS signals can only recover approximately 88.0% of the annual hydrology signals for the truncated degree of 180, and the inversion of hydrology signals from the simulated trend GPS signals can recover approximately 92.5% for the truncated degree of 90. However, when using the simulated GRACE data, it is possible to recover almost 100%. Therefore, in future, the TC1 P model can be used in the inversions ofhydrology signals based on GPS network data. PREM is also valid for use with inversions of hydrology signals from GRACE data at resolutions of approximately 220 km and larger.