期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
浅析油品蒸发损耗及发展趋势
1
作者 向松明 《化工设计通讯》 CAS 2024年第7期51-53,59,共4页
油品蒸发损耗不仅影响环境质量,还影响油品质量。除了该问题之外,蒸发损耗将促进汽油氧化,辛烷值减小,长时间运行对汽车发动机造成不利影响。此外,油品蒸发损耗还有一定的安全隐患,易造成局部火灾,并对人类和动植物也有毒害性。目前,国... 油品蒸发损耗不仅影响环境质量,还影响油品质量。除了该问题之外,蒸发损耗将促进汽油氧化,辛烷值减小,长时间运行对汽车发动机造成不利影响。此外,油品蒸发损耗还有一定的安全隐患,易造成局部火灾,并对人类和动植物也有毒害性。目前,国内外正结合油品蒸发损耗的相关因素,发掘降耗措施,比如对输送和储油设备的结构进行设计和改进,尽可能加大对烃蒸气的回收力度,并采取合适的方法来抑制油品蒸发损耗。 展开更多
关键词 油蒸气传质过程 油罐静止储存损耗 油罐动液面损耗
下载PDF
WeldNet:A voxel-based deep learning network for point cloud annular weld seam detection
2
作者 WANG Hui RONG YouMin +3 位作者 XU JiaJun xiang songming PENG YiFan HUANG Yu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1215-1225,共11页
Weld seam detection is an important part of automated welding.At present,few studies have been conducted on annular weld seams,and a lot of defects exist in the point cloud model of the tube sheet obtained by RGB-D ca... Weld seam detection is an important part of automated welding.At present,few studies have been conducted on annular weld seams,and a lot of defects exist in the point cloud model of the tube sheet obtained by RGB-D cameras and photography methods.Aiming at the above problems,this paper proposed an annular weld seam detection network named WeldNet where a voxel feature encoding layer was adaptively improved for annular weld seams,the sparse convolutional network and region proposal network(RPN)were used to detect annular weld seam position,and an annular weld seam detection loss function was designed.Further,an annular weld seam dataset was established to train the network.Compared with the random sampling consistency(RANSAC)method,WeldNet has a higher detection accuracy,as well as a higher detection success rate which has increased by 23%.Compared with U-Net,WeldNet has been proven to achieve a better detection result,and the intersection over the union of the weld seam detection is improved by 17.8%. 展开更多
关键词 deep learning point cloud weld seam detection WELDING annular weld seam
原文传递
基于DXF文件解析与点云数据处理的无示教自动焊接系统
3
作者 王辉 向松明 +3 位作者 荣佑民 黄禹 徐加俊 吴从义 《焊接学报》 2024年第12期28-35,共8页
传统示教焊接方式存在操作过程繁琐,效率低下以及人工依赖度高的问题,为此提出了一种基于Drawing Exchange Format (DXF)文件解析与点云数据处理的无示教自动焊接系统,该系统通过对工件DXF文件进行解析,以获取理想焊缝位置及焊缝类型信... 传统示教焊接方式存在操作过程繁琐,效率低下以及人工依赖度高的问题,为此提出了一种基于Drawing Exchange Format (DXF)文件解析与点云数据处理的无示教自动焊接系统,该系统通过对工件DXF文件进行解析,以获取理想焊缝位置及焊缝类型信息,求解多坐标系转换关系实现机器人焊缝初始定位,在此基础上,提出一种考虑机器人实时位姿的激光视觉传感器焊件点云获取方法,进一步开发一种基于平面检测的点云焊缝检测算法,获取实际焊缝位置信息,实现机器人无示教焊接.结果表明,该系统可准确获取焊件点云信息,同时焊缝提取方法误差0.20 mm,满足实际焊接需求. 展开更多
关键词 无示教焊接 DXF解析 点云处理 焊缝检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部