Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are invest...Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.展开更多
Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs cause...Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species(ROS)microenvironment.In this study,monascus pigment(MP)nanoparticle(PPM)was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs(BMSCs).Meanwhile,in order to load PPM and reduce the mechanical damage of BMSCs,injectable hydrogels based on Schiff base cross-linking were prepared.The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities,significantly enhancing BMSCs survival and activity in HF microenvironment.This hydrogel demonstrates superior biocompatibility,injectability,and tissue adhesion.With the synergistic effects of injectable,adhesive hydrogel and the microenvironment-modulating properties of MP,cardiac function was effectively improved in the pericardial sac of rats.Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.展开更多
In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different ...In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photouic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556 × 10^12 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.展开更多
By its unparalleled capacity to manipulate optical parameters,metasurfaces demonstrate the ability to simultaneously manipulate the amplitude and phase of incident light.Exhibiting both near-field nanoprinting images ...By its unparalleled capacity to manipulate optical parameters,metasurfaces demonstrate the ability to simultaneously manipulate the amplitude and phase of incident light.Exhibiting both near-field nanoprinting images and far-field holography images is a quintessential illustration of this capability.In preceding investigations,image multiplexing commonly transpires within the single polarization state or orthogonal polarization states,thereby exhibiting a deficiency in terms of information security when contrasted with the nonorthogonal polarization states.In this research,a multifunctional metasurface with the capability of exhibiting four-channel images has been proposed by using a nanobrick as a quarter-wave plate.Through the adjustment of the orientation angles of each nanobrick,nanoprinting can be displayed under both linearly and circularly polarized light.Building on this,the propagation phase is combined with the geometric phase to generate diverse phase delays,enabling the metasurface to be multiplexed under two nonorthogonal polarization states to achieve four-channel image displays.Intriguingly,bidirectional nanoprinting and bidirectional holography can be achieved by altering the direction of incidence polarization states.The proposed metasurface platform can open new possibilities for creating compact multifunctional optical devices,while also enhancing applications in multichannel image displays,information anticounterfeiting,and encryption.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61774062,and 61771205).
文摘Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.
基金supported by the National Natural Science Foundation of China(81900339,82072072,32261160372)The Third People’s Hospital of Chengdu First-Class Incubation Project(CSY-YN-01-2023-003)+3 种基金Special Funding for Postdoctoral Research in Sichuan Province(2023TB095)The Fundamental Research Funds for the Central Universities(2682022TPY052)Chengdu Medical Research Project(2022138)the Natural Science Foundation of Tibet Autonomous Region Grant number(XZ202201ZR0036G).
文摘Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species(ROS)microenvironment.In this study,monascus pigment(MP)nanoparticle(PPM)was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs(BMSCs).Meanwhile,in order to load PPM and reduce the mechanical damage of BMSCs,injectable hydrogels based on Schiff base cross-linking were prepared.The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities,significantly enhancing BMSCs survival and activity in HF microenvironment.This hydrogel demonstrates superior biocompatibility,injectability,and tissue adhesion.With the synergistic effects of injectable,adhesive hydrogel and the microenvironment-modulating properties of MP,cardiac function was effectively improved in the pericardial sac of rats.Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.
基金National Natural Science Foundation of China(NSFC)(11674107,11775083,61475049,61771205,61774062)Natural Science Foundation of Guangdong Province(2015A030313374)Scientific Research Foundation of Graduate School of South China Normal University(2015lkxm27,2017lkxm091)
文摘In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photouic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556 × 10^12 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos.62175070 and 61774062)the Natural Science Foundation of Guangdong Province (No.2021A1515010352)the Science and Technology Program of Guangzhou (No.2019050001)。
文摘By its unparalleled capacity to manipulate optical parameters,metasurfaces demonstrate the ability to simultaneously manipulate the amplitude and phase of incident light.Exhibiting both near-field nanoprinting images and far-field holography images is a quintessential illustration of this capability.In preceding investigations,image multiplexing commonly transpires within the single polarization state or orthogonal polarization states,thereby exhibiting a deficiency in terms of information security when contrasted with the nonorthogonal polarization states.In this research,a multifunctional metasurface with the capability of exhibiting four-channel images has been proposed by using a nanobrick as a quarter-wave plate.Through the adjustment of the orientation angles of each nanobrick,nanoprinting can be displayed under both linearly and circularly polarized light.Building on this,the propagation phase is combined with the geometric phase to generate diverse phase delays,enabling the metasurface to be multiplexed under two nonorthogonal polarization states to achieve four-channel image displays.Intriguingly,bidirectional nanoprinting and bidirectional holography can be achieved by altering the direction of incidence polarization states.The proposed metasurface platform can open new possibilities for creating compact multifunctional optical devices,while also enhancing applications in multichannel image displays,information anticounterfeiting,and encryption.