Apurine/pyrimidine-free endonuclease 1(APEX1)is a multifunctional enzyme that contributes to oxidization-mediated DNA-cleaved base excision repair and redox activation of transcription factors.However,the role of APEX...Apurine/pyrimidine-free endonuclease 1(APEX1)is a multifunctional enzyme that contributes to oxidization-mediated DNA-cleaved base excision repair and redox activation of transcription factors.However,the role of APEX1 during cardiomyocyte oxidative stress injury is not completely understood.In the present study,whether APEX1 protects oxidative damage-induced cardiomyocytes was investigated.mRNA and protein expression levels of APEX1 were downregulated in the mouse model of cardiac ischemia-reperfusion injury.Furthermore,the expression of APEX1 in hydrogen peroxide(H 2 O 2)-treated neonatal mice cardiomyocytes was also decreased.APEX1 knockdown aggravated H 2 O 2-treated cardiomyocyte apoptosis indexes.By contrast,APEX1 overexpression reversed H 2 O 2-induced oxidative damage,as demonstrated by decreased caspase 3 and Bax expression levels.Moreover,homeobox A5 upregulated APEX1.The results of the present study indicated that APEX1 displayed protective effects against oxidative damage,suggesting that APEX1 may serve as a unique protective strategy for cardiac ischemia-reperfusion injury.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.81900245 and 81770395).
文摘Apurine/pyrimidine-free endonuclease 1(APEX1)is a multifunctional enzyme that contributes to oxidization-mediated DNA-cleaved base excision repair and redox activation of transcription factors.However,the role of APEX1 during cardiomyocyte oxidative stress injury is not completely understood.In the present study,whether APEX1 protects oxidative damage-induced cardiomyocytes was investigated.mRNA and protein expression levels of APEX1 were downregulated in the mouse model of cardiac ischemia-reperfusion injury.Furthermore,the expression of APEX1 in hydrogen peroxide(H 2 O 2)-treated neonatal mice cardiomyocytes was also decreased.APEX1 knockdown aggravated H 2 O 2-treated cardiomyocyte apoptosis indexes.By contrast,APEX1 overexpression reversed H 2 O 2-induced oxidative damage,as demonstrated by decreased caspase 3 and Bax expression levels.Moreover,homeobox A5 upregulated APEX1.The results of the present study indicated that APEX1 displayed protective effects against oxidative damage,suggesting that APEX1 may serve as a unique protective strategy for cardiac ischemia-reperfusion injury.