This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of whe...This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32′93″N, 120°41′88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 pmol/mol in the first treatment (CO2 group). The temperature was increased by 2℃ in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 ℃ and 413μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2+TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.展开更多
Visible light communication(VLC)is a promising solution to the increasing demands for wireless connectivity.Gallium nitride micro-sized light emitting diodes(micro-LEDs)are strong candidates for VLC due to their high ...Visible light communication(VLC)is a promising solution to the increasing demands for wireless connectivity.Gallium nitride micro-sized light emitting diodes(micro-LEDs)are strong candidates for VLC due to their high bandwidths.Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz.An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated,and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED,when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system.A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.展开更多
High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant s...High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant starch content may attenuate the protein fermentation. The aim of this study was to evaluate the effect of resistant starch on protein fermentation by inocula from large intestine of pigs using in vitro cultivation. Fermentation patterns were analyzed during a 24-h incubation of cecal and colonic digesta with varying corn resistant starch contents, using casein protein as sole nitrogen source. The results showed that the concentration of short-chain fatty acids(SCFA) and cumulative gas production were significantly increased(P < 0.05), while ammonia-nitrogen(NH_3-N) and branched-chain fatty acids(BCFA), which indicated protein fermentation, decreased when the corn resistant starch levels increased(P < 0.05). The copies of total bacteria, Bifidobacterium and Lactobacillus were significantly increased with the increased corn resistant starch levels after incubation(P < 0.05). The copies of the Bifidobacterium and Lactobacillus in cecum were significantly higher than those in colon(P < 0.05). We conclude that the addition of corn resistant starch weakens the protein fermentation by influencing microbial population and reducing protein fermentation in the cecum and colon in vitro.展开更多
The low modulation bandwidth of deep-ultraviolet(UV) light sources is considered as the main reason limiting the data transmission rate of deep-UV communications. Here, we present high-bandwidth Ⅲ-nitride microlight-...The low modulation bandwidth of deep-ultraviolet(UV) light sources is considered as the main reason limiting the data transmission rate of deep-UV communications. Here, we present high-bandwidth Ⅲ-nitride microlight-emitting diodes(μLEDs) emitting in the UV-C region and their applications in deep-UV communication systems. The fabricated UV-C μLEDs with 566 μm2 emission area produce an optical power of 196 μW at the 3400 A∕cm2 current density. The measured 3 dB modulation bandwidth of these μLEDs initially increases linearly with the driving current density and then saturates as 438 MHz at a current density of 71 A∕cm2, which is limited by the cutoff frequency of the commercial avalanche photodiode used for the measurement. A deep-UV communication system is further demonstrated. By using the UV-C μLED, up to 800 Mbps and 1.1 Gbps data transmission rates at bit error ratio of 3.8 × 10-3 are achieved assuming on-off keying and orthogonal frequency-division multiplexing modulation schemes, respectively.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest in China(No.200903003)
文摘This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32′93″N, 120°41′88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 pmol/mol in the first treatment (CO2 group). The temperature was increased by 2℃ in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 ℃ and 413μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2+TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/K00042X/1,EP/M506515/1)
文摘Visible light communication(VLC)is a promising solution to the increasing demands for wireless connectivity.Gallium nitride micro-sized light emitting diodes(micro-LEDs)are strong candidates for VLC due to their high bandwidths.Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz.An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated,and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED,when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system.A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.
基金supported by grants from National Key Basic Research Program of China (2013CB127300)National Natural Science Foundation of China (31430082)Natural Science Foundation of Jiangsu Province (BK20130058)
文摘High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant starch content may attenuate the protein fermentation. The aim of this study was to evaluate the effect of resistant starch on protein fermentation by inocula from large intestine of pigs using in vitro cultivation. Fermentation patterns were analyzed during a 24-h incubation of cecal and colonic digesta with varying corn resistant starch contents, using casein protein as sole nitrogen source. The results showed that the concentration of short-chain fatty acids(SCFA) and cumulative gas production were significantly increased(P < 0.05), while ammonia-nitrogen(NH_3-N) and branched-chain fatty acids(BCFA), which indicated protein fermentation, decreased when the corn resistant starch levels increased(P < 0.05). The copies of total bacteria, Bifidobacterium and Lactobacillus were significantly increased with the increased corn resistant starch levels after incubation(P < 0.05). The copies of the Bifidobacterium and Lactobacillus in cecum were significantly higher than those in colon(P < 0.05). We conclude that the addition of corn resistant starch weakens the protein fermentation by influencing microbial population and reducing protein fermentation in the cecum and colon in vitro.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/M01326X/1)
文摘The low modulation bandwidth of deep-ultraviolet(UV) light sources is considered as the main reason limiting the data transmission rate of deep-UV communications. Here, we present high-bandwidth Ⅲ-nitride microlight-emitting diodes(μLEDs) emitting in the UV-C region and their applications in deep-UV communication systems. The fabricated UV-C μLEDs with 566 μm2 emission area produce an optical power of 196 μW at the 3400 A∕cm2 current density. The measured 3 dB modulation bandwidth of these μLEDs initially increases linearly with the driving current density and then saturates as 438 MHz at a current density of 71 A∕cm2, which is limited by the cutoff frequency of the commercial avalanche photodiode used for the measurement. A deep-UV communication system is further demonstrated. By using the UV-C μLED, up to 800 Mbps and 1.1 Gbps data transmission rates at bit error ratio of 3.8 × 10-3 are achieved assuming on-off keying and orthogonal frequency-division multiplexing modulation schemes, respectively.