Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probabilit...Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probability distribution of lift-off velocity can be expressed as a lognormal function, while that of lift-off angle follows an exponential function. The probability distribution of lift-off angle conditioned for each lift-off velocity also follows an exponential function, with a slope that becomes steeper with increasing lift-off velocity. This implies that the probability distribution of lift-off velocity is strongly dependent on the lift-off angle. However, these lift-off parameters are generally treated as an independent joint probability distribution in the literature. Numerical simulations were carried out to investigate the effects of conditional versus independent joint probability distributions on the vertical sand mass flux distribution. The simulation results derived from the conditional joint probability distribution agree much better with experimental data than those from the independent ones. Thus, it is better to describe the lift-off velocity of saltating sand particles using the conditional joint probability distribution. These results improve our understanding of saltation processes in wind-blown sand.展开更多
The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co...The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.展开更多
As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynami...As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of China(GK201503053)the National Natural Science Foundation of China(41601002)
文摘Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probability distribution of lift-off velocity can be expressed as a lognormal function, while that of lift-off angle follows an exponential function. The probability distribution of lift-off angle conditioned for each lift-off velocity also follows an exponential function, with a slope that becomes steeper with increasing lift-off velocity. This implies that the probability distribution of lift-off velocity is strongly dependent on the lift-off angle. However, these lift-off parameters are generally treated as an independent joint probability distribution in the literature. Numerical simulations were carried out to investigate the effects of conditional versus independent joint probability distributions on the vertical sand mass flux distribution. The simulation results derived from the conditional joint probability distribution agree much better with experimental data than those from the independent ones. Thus, it is better to describe the lift-off velocity of saltating sand particles using the conditional joint probability distribution. These results improve our understanding of saltation processes in wind-blown sand.
基金supported by the National Natural Science Foundation of China (41401310, 41661003)the Science-Technology Research Project of Ningxia Environmental Protection Department
文摘The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.
基金supported by the National Natural Science Foundation of China (41601002, 41871011)the China Postdoctoral Science Foundation (2017M623115)+1 种基金the Science Foundation of Shaanxi Province (2018JQ4010)the Fundamental Research Funds for the Central Universities (GK201903077)
文摘As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.