Cyclohexanephosphonyl heteropolyundecatungstates of formula [C6H11P(O)]2 Xn+ W11O398-n- (Xn+=P5+, Si4+, B3+, Ga3+ have been prepared. purified and characterized by elemental analysis .IR and 1H. 31P and 183W NMR.
In order to analyze the sequences of the internal transcribed spacer (ITS) including the 5.8 S ribosomal DNA (rDNA) of common dermatophytes, so as to obtain a rapid and accurate method to identify the species of d...In order to analyze the sequences of the internal transcribed spacer (ITS) including the 5.8 S ribosomal DNA (rDNA) of common dermatophytes, so as to obtain a rapid and accurate method to identify the species of dermatophytes and to establish the phylogenetic tree of these species to understand their relationship, 16 strains of dermatophytes were collected and preliminarily identified by morphological characteristics. General primers for fungi ITS1 and ITS4 were used to amplify the ITS rDNA of each strains with PCR. The PCR products after purification were sequenced directly and were analyzed through internet. In the results, 11 strains were identified by means of morphological features, among which 5 strains were Trichophyton, 5 strains were Microsporum and 1 was Epidermophytoa, which was consistent with the results by molecular biology. In the 5 unidentifiable strains, 1 strain was proved to be Chrysosporium by molecular biology. These strains studied could be divided into 3 different classes as indicated in the analysis of the phylogenetic tree of the sequences in ITS, which were quite different from those of morphological classification. It is evident from the above observations that the molecular method of analysis on the ITS sequences is a rapid, highly sensitive and accurate approach for the detection of dematophyte species, however, it still exhibits some limitations needing the supplementation with morphological identification.展开更多
文摘Cyclohexanephosphonyl heteropolyundecatungstates of formula [C6H11P(O)]2 Xn+ W11O398-n- (Xn+=P5+, Si4+, B3+, Ga3+ have been prepared. purified and characterized by elemental analysis .IR and 1H. 31P and 183W NMR.
文摘In order to analyze the sequences of the internal transcribed spacer (ITS) including the 5.8 S ribosomal DNA (rDNA) of common dermatophytes, so as to obtain a rapid and accurate method to identify the species of dermatophytes and to establish the phylogenetic tree of these species to understand their relationship, 16 strains of dermatophytes were collected and preliminarily identified by morphological characteristics. General primers for fungi ITS1 and ITS4 were used to amplify the ITS rDNA of each strains with PCR. The PCR products after purification were sequenced directly and were analyzed through internet. In the results, 11 strains were identified by means of morphological features, among which 5 strains were Trichophyton, 5 strains were Microsporum and 1 was Epidermophytoa, which was consistent with the results by molecular biology. In the 5 unidentifiable strains, 1 strain was proved to be Chrysosporium by molecular biology. These strains studied could be divided into 3 different classes as indicated in the analysis of the phylogenetic tree of the sequences in ITS, which were quite different from those of morphological classification. It is evident from the above observations that the molecular method of analysis on the ITS sequences is a rapid, highly sensitive and accurate approach for the detection of dematophyte species, however, it still exhibits some limitations needing the supplementation with morphological identification.