The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sens...The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sensor,based on separate designs for sensing,memory,and processing units,limits its integration density.Moreover,redundant signal communication significantly increases energy consumption.Current neuromorphic devices integrating sensing and signal processing show promise in various computer vision applications,but there is still a need for frame-based imaging with good compatibility.In this study,we developed a dual-mode image sensor based on a high-density all-inorganic perovskite nanowire array.The device can switch between frame-based standard imaging mode and neuromorphic imaging mode by applying different biases.This unique bias-dependent photo response is based on a well-designed energy band diagram.The biomimetic alignment of nanowires ensures the potential for high-resolution imaging.To further demonstrate the imaging ability,we conducted pattern reconstruction in both modes with a 10×10 crossbar device.This study introduces a novel image sensor with high compatibility and efficiency,suitable for various applications including computer vision,surveillance,and robotics.展开更多
Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional gene...Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional genes involved in soil C cycling remain largely unknown.We investigated the effects of warming and increased precipitation on soil C cycling in a temperate desert steppe of Inner Mongolia using metagenomic sequencing.We found that warming reduced plant richness,Shannon-Wiener and Simpson index.In contrast,increased precipitation signifcantly infuenced Shannon-Wiener and Simpson index.Warming reduced soil microbial species by 5.4%while increased precipitation and warming combined with increased precipitation led to increases in soil microbial species by 23.3%and 2.7%,respectively.The relative abundance of Proteobacteria,which involve C cycling genes,was signifcantly increased by warming and increased precipitation.Warming signifcantly reduced the abundance of GAPDH(Calvin cycle)and celF(cellulose degradation)while it enhanced the abundance of glxR(lignin degradation).Increased precipitation signifcantly enhanced the abundance of pgk(Calvin cycle),coxL(carbon monoxide oxidation),malZ(starch degradation),and mttB(methane production).Moreover,a wide range of correlations among soil properties and C cycling functional genes was detected,suggesting the synergistic and/or antagonistic relationships under scenario of global change.These results may suggest that warming is benefcial to soil C storage while increased precipitation negatively affects soil C sequestration.These fndings provide a new perspective for understanding the response of microbial communities to warming and increased precipitation in the temperate desert steppe.展开更多
Introduction:Payments for Ecosystem Services(PES)programs have been implemented globally to protect ecosystems while securing the well-being of affected people.Reasonable payment standards are key to successful PES pr...Introduction:Payments for Ecosystem Services(PES)programs have been implemented globally to protect ecosystems while securing the well-being of affected people.Reasonable payment standards are key to successful PES programs.Although some approaches are available for determining payment standards,few studies have applied them for grassland conservation with location indicators and socioeconomic contexts properly considered.Methods:Using China’s first pilot Grassland Ecological Compensation Policy(GECP)as an example,we analyzed the effects of payment levels,other natural and socioeconomic factors on herders’willingness to participate in the GECP in Damao County in Inner Mongolia where grassland degradation is happening at an alarming rate due to overgrazing and cropland expansion.Outcomes:Our results show that households with lower herding income,older age,higher education,larger grassland areas,and worse social relationships are more inclined to participate in the GECP.Conservation payment level,as well as natural and socioeconomic contextual factors,significantly affect the response of herdsmen,and a reasonable grassland payment standard with a 95%policy compliance rate should be 8.8 yuan mu-1.Discussion and Conclusion:Our findings can inform governments to develop effective PES programs to balance the need of human well-being improvement and grassland conservation in China and beyond.展开更多
基金supported by the Science and Technology Plan of Shenzhen(JCYJ20170818114107730,JCYJ20180306174923335)The General Research Fund(projects 16205321,16214619)from the Hong Kong Research Grant Council,Innovation Technology Fund(GHP/014/19SZ)+2 种基金Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory(2020B1212030010)Foshan Innovative and Entrepreneurial Research Team Program(2018IT100031)the support from the Center for 1D/2D Quantum Materials and the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST。
文摘The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sensor,based on separate designs for sensing,memory,and processing units,limits its integration density.Moreover,redundant signal communication significantly increases energy consumption.Current neuromorphic devices integrating sensing and signal processing show promise in various computer vision applications,but there is still a need for frame-based imaging with good compatibility.In this study,we developed a dual-mode image sensor based on a high-density all-inorganic perovskite nanowire array.The device can switch between frame-based standard imaging mode and neuromorphic imaging mode by applying different biases.This unique bias-dependent photo response is based on a well-designed energy band diagram.The biomimetic alignment of nanowires ensures the potential for high-resolution imaging.To further demonstrate the imaging ability,we conducted pattern reconstruction in both modes with a 10×10 crossbar device.This study introduces a novel image sensor with high compatibility and efficiency,suitable for various applications including computer vision,surveillance,and robotics.
基金funded by the National Key Research and Development Program of China(2022YFF130180)the Scientifc and Technological Achievements Commercialization Project of Inner Mongolia(2020CG0064).Confict of interest statement.The authors declare that they have no confict of interest.
文摘Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional genes involved in soil C cycling remain largely unknown.We investigated the effects of warming and increased precipitation on soil C cycling in a temperate desert steppe of Inner Mongolia using metagenomic sequencing.We found that warming reduced plant richness,Shannon-Wiener and Simpson index.In contrast,increased precipitation signifcantly infuenced Shannon-Wiener and Simpson index.Warming reduced soil microbial species by 5.4%while increased precipitation and warming combined with increased precipitation led to increases in soil microbial species by 23.3%and 2.7%,respectively.The relative abundance of Proteobacteria,which involve C cycling genes,was signifcantly increased by warming and increased precipitation.Warming signifcantly reduced the abundance of GAPDH(Calvin cycle)and celF(cellulose degradation)while it enhanced the abundance of glxR(lignin degradation).Increased precipitation signifcantly enhanced the abundance of pgk(Calvin cycle),coxL(carbon monoxide oxidation),malZ(starch degradation),and mttB(methane production).Moreover,a wide range of correlations among soil properties and C cycling functional genes was detected,suggesting the synergistic and/or antagonistic relationships under scenario of global change.These results may suggest that warming is benefcial to soil C storage while increased precipitation negatively affects soil C sequestration.These fndings provide a new perspective for understanding the response of microbial communities to warming and increased precipitation in the temperate desert steppe.
基金This work was supported by the Outstanding Youth Fund of Zhejiang Province[LR18D010001]Ministry of Science and Technology of China[2016YFC0503404]National Natural Science Foundation of China[71673247].
文摘Introduction:Payments for Ecosystem Services(PES)programs have been implemented globally to protect ecosystems while securing the well-being of affected people.Reasonable payment standards are key to successful PES programs.Although some approaches are available for determining payment standards,few studies have applied them for grassland conservation with location indicators and socioeconomic contexts properly considered.Methods:Using China’s first pilot Grassland Ecological Compensation Policy(GECP)as an example,we analyzed the effects of payment levels,other natural and socioeconomic factors on herders’willingness to participate in the GECP in Damao County in Inner Mongolia where grassland degradation is happening at an alarming rate due to overgrazing and cropland expansion.Outcomes:Our results show that households with lower herding income,older age,higher education,larger grassland areas,and worse social relationships are more inclined to participate in the GECP.Conservation payment level,as well as natural and socioeconomic contextual factors,significantly affect the response of herdsmen,and a reasonable grassland payment standard with a 95%policy compliance rate should be 8.8 yuan mu-1.Discussion and Conclusion:Our findings can inform governments to develop effective PES programs to balance the need of human well-being improvement and grassland conservation in China and beyond.