Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends ...Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends poten- tial application because a finger can be used as one friction surface in the contact electrification. In this work, a fully flexible STENG has been made, consisting of polydimethylsiloxane(PDMS) with micro-nano structures on its ob- serve side and a flexible electrode on its reverse side. The femtosecond laser ablation was introduced to make micro-nano structures on PDMS and Ag nanowires(Ag NWs) were embedded in PDMS to serve as flexible induction electrode. It has been demonstrated that the energy conversion efficiency increases greatly because of the existing micro-nano structures on PDMS. Further, the mechanism of STENG was proved. Owing to the fully flexible charac- teristics in both the electrode and PDMS, STENG works well when it is adhered on any subject, for example, on clothes by tape.展开更多
基金the National Natural Science Foundation of China(Nos.61378053, 51373064).
文摘Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends poten- tial application because a finger can be used as one friction surface in the contact electrification. In this work, a fully flexible STENG has been made, consisting of polydimethylsiloxane(PDMS) with micro-nano structures on its ob- serve side and a flexible electrode on its reverse side. The femtosecond laser ablation was introduced to make micro-nano structures on PDMS and Ag nanowires(Ag NWs) were embedded in PDMS to serve as flexible induction electrode. It has been demonstrated that the energy conversion efficiency increases greatly because of the existing micro-nano structures on PDMS. Further, the mechanism of STENG was proved. Owing to the fully flexible charac- teristics in both the electrode and PDMS, STENG works well when it is adhered on any subject, for example, on clothes by tape.